
Using the Hereditary Substitution Function in
Normalization Proofs

Harley Eades and Aaron Stump

Computer Science
The University of Iowa

Qualifying Exam 2011



Introduction

What is a functional programming language?
The λ-calculus.

The language, operational semantics, and examples.
Paradoxes and the need for something better.

The Simply Typed λ-calculus.
Language, types, and examples.

A bit about logic.
Intuitionistic logic and how type theories can be considered
intuitionistic logics.
The normalization property.

The hereditary substitution function.
The definition and properties of the function.

Normalization by hereditary substitution.
Semantics, a main substitution lemma, and type soundness.

Normalization of STLC, SSF, and SSFω.
Define each language and apply normalization by hereditary
substitution.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



What is a functional programming language?

A functional programming language is a programming language
that is based on a mathematical foundation.

This foundation is the λ-calculus.

A few of the most popular functional programming languages are
ML, Haskell, and (pure) Scheme.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The λ-Calculus

Definition (The Syntax)

The language of the λ-calculus consists of only variables, functions,
and applications. The grammar is as follows:

t ::= x | λx .t | t t

Definition (The Operational Semantics)

The operational semantics for the λ-calculus is the following:
(λx .t) t ′  [t ′/x ]t

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The λ-Calculus

Definition

The capture avoiding substitution function is defined by induction on
the form of t ′, the term we are substituting into.

[t/x ]x = t
[t/x ]y = y
[t/x ](λx .t ′) = λx .t ′

[t/x ](λy .t ′) = λy .[t/x ]t ′

Where y 6∈ FV (t).
[t/x ](λy .t ′) = λy .[([z/y ]t)/x ]t ′

Where y ∈ FV (t) and z is a variable distinct from all
variables (free or bound) in t .

[t/x ](t1 t2) = ([t/x ]t1) ([t/x ]t2)

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The λ-Calculus

Example terms:
Identity Function: λx .x
Squaring Function: λx .x x
True: λx .λy .x
False: λx .λy .y
Conjunction: λx .λy .x y x
Disjunction: λx .λy .x x y
Zero: λs.λz.z
One: λs.λz.s z
Plus: λn1.λn2.λs.λz.n1 s (n2 s z)
Multiplication: λn1.λn2.λs.λz.n2 (plus n1) z

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The λ-Calculus

Example computation (3 + 2):
Let 3 = λs.λz.s (s (s z)), 2 = λs.λz.s (s z), and
plus = λn1.λn2.λs.λz.n1 s (n2 s z). Then

(plus 3) 2 ≡ ((λn1.λn2.λs.λz.n1 s (n2 s z)) 3) 2
 β (λn2.λs.λz.3 s (n2 s z)) 2
 β λs.λz.3 s (2 s z)
≡ λs.λz.(λs.λz.s (s (s z))) s (2 s z)
 β λs.λz.(λz.s (s (s z))) (2 s z)
≡ λs.λz.(λz.s (s (s z))) ((λs.λz.s (s z)) s z)
 β λs.λz.(λz.s (s (s z))) ((λz.s (s z)) z)
 β λs.λz.(λz.s (s (s z))) (s (s z))
 β λs.λz.s (s (s (s (s z))))
≡ 5.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Paradoxes of the λ-Calculus

Infinite loop:
(λx .x x) (λx .x x) β (λx .x x) (λx .x x) β · · · .

Loops are good for general purpose programming, but not for
logic.

Terms like the one above allows the formulation of paradoxes in the
λ-calculus.
Thus, the λ-calculus is inconsistent as a logic.
Church fixed this by adding types.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The Simply Typed λ-calculus

Definition (The Syntax)

The grammar is as follows:
t ::= x | λx : φ.t | t t
φ ::= X | φ→ φ
Γ ::= · | Γ, x : φ

Definition (Type Checking Rules)

Γ(x) = φ

Γ ` x : φ
VAR

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2
LAM

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
APP

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Example Typing Derivations

s : X → X , z : X ` s : X → X
VAR

s : X → X , z : X ` z : X
VAR

s : X → X , z : X ` s z : X
APP

s : X → X ` λz : X .s z : X → X
LAM

· ` λs : X → X .λz : X .s z : (X → X)→ X → X
LAM

x : X → X ` x : X → X
VAR

x : X → X ` x : X
???

x : X → X ` x x : X → X
APP

· ` λx : X → X .x x : X → X
LAM

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



A Bit about Logic

Type theories like STLC can be considered as intuitionistic logics.

In fact there is a one-to-one correspondence between STLC and
minimal intuitionistic propositional logic.

This correspondence is called the Curry-Howard
correspondence or proofs-as-programs and
propositions-as-types correspondence.

We reveal this correspondence by showing how STLC and
minimal intuitionistic propositional logic correspond using an
interpretation called the BHK-interpretation.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Minimal Intuitionistic Propositional Logic

Definition (Gentzen’s Natural Deduction)

We denote propositional variables by x , xi , y , and so on. We assume
an infinite number of them. All formulas will be denoted by φi . We
denote sets of assumptions by Γi .

φ ::= x | φ1 → φ2

φ ` φ
I

Γ, φ1 ` φ2

Γ ` φ1 → φ2
→i

Γ1 ` φ1 → φ2 Γ2 ` φ1

Γ1, Γ2 ` φ2
→e

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The BHK-Interpretation

In intuitionistic logic or constructive logic proofs of propositions
must be constructed.

The Brouwer, Heyting, and Kolmogorov interpretation
(BHK-interpretation) tells us exactly how to construct the proof of
a proposition in minimal intuitionistic logic.

Definition

The BHK-interpretation:
c r (φ1 → φ2) iff c is a function, λx .t , such that for any d r φ1

(λx .t) d r φ2.
We say a construction c realizes φ iff c r φ.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Curry-Howard Correspondence

Through the work of Curry, Howard, Tait, Laüchli, De Bruijn, and
Prawitz there exists an important correspondence between type
theory and intuitionistic logic stated as follows:

Propositions = Types and Proofs = Programs.

Consider the type-checking rules for STLC:

Γ(x) = φ

Γ ` x : φ
VAR

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2
LAM

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
APP

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Curry-Howard Correspondence

Through the work of Curry, Howard, Tait, Laüchli, De Bruijn, and
Prawitz there exists an important correspondence between type
theory and intuitionistic logic stated as follows:

Propositions = Types and Proofs = Programs.

Consider the type-checking rules for STLC:

Γ(x) = φ

Γ ` x : φ
VAR

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2
LAM

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
APP

Consider the type-checking rules for STLC:

Γ′, φ ` φ
VAR

Γ′, φ1 ` φ2

Γ′ ` φ1 → φ2
LAM

Γ′ ` φ1 → φ2 Γ′ ` φ1

Γ′ ` φ2
APP

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Proofs as Programs

(p → q), (q → u), p |= p
(p → q), (q → u), p |= p → q

(p → q), (q → u), p |= q
→e

(p → q), (q → u), p |= q → u

(p → q), (q → u), p |= u
→e

(p → q), (q → u) |= p → u
→i

(p → q) |= (q → u) → (p → u)
→i

· |= (p → q) → (q → u) → (p → u)
→i

p : (P → Q), q : (Q → U), z; P ` z : P
p : (P → Q), q : (Q → U), z; P ` p : (P → Q)

p : (P → Q), q : (Q → U), z; P ` p z : Q p : (P → Q), q : (Q → U), z; P ` q : Q → U

p : (P → Q), q : (Q → U), z : P ` q (p z) : U

p : (P → Q), q : (Q → U) ` λz : P.q (p z) : (P → U)

p : (P → Q) ` λq : (Q → U).λz : P.q (p z) : (Q → U) → (P → U)

· ` λp : (P → Q).λq : (Q → U).λz : P.q (p z) : (P → Q) → (Q → U) → (P → U)

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



The Normalization Property

The property where there exists a computation path (w.r.t the
operational semantics) where all programs definable in a typed λ-calculi
terminate. More precisely, ∀t .∃t ′.t  ∗ t ′ 6 . We call t ′ a normal form.

The normalization property is important, because proofs of logical
formulas must be finite and total.

Diverging proofs do not establish any kind of truth.

Normalization is not a trivial property and is often very difficult to prove.

The property is a meta-level property which requires a strong
meta-theory.
The complexity of normalization proofs is the driving force behind
this research.

Existing proof methods are hard to use, even for weak theories.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Hereditary substitution function [Watkins et al., 2004]

Watkins et al. defined a dependently typed programming
language called Canonical LF (CLF).

The language only consisted of normal forms.
This prevented capture avoiding substitution from being used by
the operational semantics.

Example: (λx : X → X .x y)(λx : X .x) [(λx : X .x)/x ](x y).

Syntax: [t/x ]φt ′ = t ′′.

Like ordinary capture avoiding substitution.

Except, if the substitution introduces a redex, then that redex is
recursively reduced.

Example: [(λz : X .z)/x ]X→X (x y) ( (λz : X .z)y  [y/z]X z) = y .

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization by hereditary substitution

Proving normalization of some type theory using hereditary
substitution involves six main steps:

i. define a well-founded ordering on types,

ii. define the hereditary substitution function,

iii. prove the properties of the hereditary substitution function,

iv. define a semantics for types called the interpretation of types,

v. prove the semantics is closed under hereditary substitutions (this
implies that the semantics is closed under capture avoiding
substitutions), and

vi. prove all typeable terms are members of the interpretation of their
type. This is known as type soundness.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of STLC

The ordering on types is just the strict subexpression ordering.
I.e. φ1 → φ2 >Γ φi where i ∈ {1, 2}.

Definition (The Construct Type Function)

ctypeφ(x, x) = φ

ctypeφ(x, t1 t2) = φ′′

Where ctypeφ(x, t1) = φ′ → φ′′.

Lemma (Properties of ctypeφ)

i. If ctypeφ(x, t) = φ′ then head(t) = x and φ′ is a subexpression of φ.

ii. If Γ, x : φ, Γ′ ` t : φ′ and ctypeφ(x, t) = φ′′ then φ′ ≡ φ′′.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of STLC

Definition (The Hereditary Substitution Function for STLC)

[t/x ]φx = t

[t/x ]φy = y

Where y is a variable distinct from x .

[t/x ]φ(λy : φ′.t′) = λy : φ′.([t/x ]φt′)

[t/x ]φ(t1 t2) = ([t/x ]φt1) ([t/x ]φt2)

Where ([t/x ]φt1) is not a λ-abstraction, or both ([t/x ]φt1) and t1 are λ-abstractions,

or ctypeφ(x, t1) is undefined.

[t/x ]φ(t1 t2) = [([t/x ]φt2)/y ]φ
′′

s′1
Where ([t/x ]φt1) ≡ λy : φ′′.s′1 for some y , s′1, and φ′′ and ctypeφ(x, t1) = φ′′ → φ′.

Lemma (Properties of ctypeφ)

iii. If Γ, x : φ, Γ′ ` t1 t2 : φ′, Γ ` t : φ, [t/x ]φt1 = λy : φ1.q, and t1 is not then there exists a
type ψ such that ctypeφ(x, t1) = ψ.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of STLC

Lemma (Total and Type Preserving)

Suppose Γ ` t : φ and Γ, x : φ, Γ′ ` t ′ : φ′. Then there exists a term t ′′

such that [t/x ]φt ′ = t ′′ and Γ, Γ′ ` t ′′ : φ′.

Lemma (Normality Preserving)

If Γ ` n : φ and Γ, x : φ ` n′ : φ′ then there exists a normal term n′′

such that [n/x ]φn′ = n′′.

Lemma (Soundness with Respect to Reduction)

If Γ ` t : φ and Γ, x : φ, Γ′ ` t ′ : φ′ then [t/x ]t ′  ∗ [t/x ]φt ′.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of STLC

Lemma (Redex Preserving)

If Γ ` t : φ, Γ, x : φ, Γ′ ` t ′ : φ′ then |rset(t ′, t)| ≥ |rset([t/x ]φt ′)|.

We call this property redex preservation, because eventually we
would like to characterize which redexes are actually destroyed
and which remain. In particularly the latter.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of STLC

Definition

First we define when a normal form is a member of the interpretation
of type φ in context Γ

n ∈ [[φ]]Γ ⇐⇒ Γ ` n : φ,

and this definition is extended to non-normal forms in the following
way

t ∈ [[φ]]Γ ⇐⇒ t  ! n ∈ [[φ]]Γ,

where t  ! t ′ is syntactic sugar for t  ∗ t ′ 6 .

Lemma (Substitution for the Interpretation of Types)

If n′ ∈ [[φ′]]Γ,x :φ,Γ′ , n ∈ [[φ]]Γ, then [n/x ]φn′ ∈ [[φ′]]Γ,Γ′ .

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of STLC

Theorem (Type Soundness)

If Γ ` t : φ then t ∈ [[φ]]Γ.

Corollary (Normalization)

If Γ ` t : φ then t  ! n.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Stratified System F

Example: λX : ∗l .λx : X .x .
Example: ∀X .φ.

Definition (Syntax for SSF)

K := ∗0 | ∗1 | . . .
φ := X | φ→ φ | ∀X : K .φ
t := x | λx : φ.t | t t | ΛX : K .t | t [φ]

Definition (The Operational Semantics for SSF)

(ΛX : ∗p.t)[φ]  [φ/X ]t
(λx : φ.t)t ′  [t ′/x ]t

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Stratified System F

Definition (Kinding Rules)

Γ ` φ1 : ∗p Γ ` φ2 : ∗q

Γ ` φ1 → φ2 : ∗max(p,q)

Γ,X : ∗q ` φ : ∗p

Γ ` ∀X : ∗q .φ : ∗max(p,q)+1

Γ(X) = ∗p p ≤ q Γ Ok
Γ ` X : ∗q

Definition (Type-checking Rules for SSF)

Γ(x) = φ Γ Ok
Γ ` x : φ

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2

Γ ` t1 : φ1 → φ2
Γ ` t2 : φ1

Γ ` t1 t2 : φ2

Γ,X : ∗p ` t : φ

Γ ` ΛX : ∗p.t : ∀X : ∗p.φ

Γ ` t : ∀X : ∗l .φ1 Γ ` φ2 : ∗l

Γ ` t[φ2] : [φ2/X ]φ1

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSF

Definition (Ordering on Types)

The ordering >Γ is defined as the least relation satisfying the universal closures of the following
formulas:

φ1 → φ2 >Γ φ1
φ1 → φ2 >Γ φ2
∀X : ∗l .φ >Γ [φ′/X ]φ where Γ ` φ′ : ∗l .

Lemma (Transitivity of >Γ)

Let φ, φ′, and φ′′ be kindable types. If φ >Γ φ
′ and φ′ >Γ φ

′′ then φ >Γ φ
′′.

Theorem (Well-founded ordering)

The ordering >Γ is well-founded on types φ such that Γ ` φ : ∗l for some l.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSF

Definition

The construct type function for SSF is defined as follows:
ctypeφ(x , x) = φ

ctypeφ(x , t1 t2) = φ′′

Where ctypeφ(x , t1) = φ′ → φ′′.

ctypeφ(x , t [φ′]) = [φ′/X ]φ′′

Where ctypeφ(x , t) = ∀X : ∗l .φ
′′.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSF

Definition (The Hereditary Substitution Function for SSF)

[t/x ]φx = t

[t/x ]φy = y
Where y is a variable distinct from x .

[t/x ]φ(λy : φ′.t′) = λy : φ′.([t/x ]φt′)

[t/x ]φ(ΛX : ∗l .t′) = ΛX : ∗l .([t/x ]φt′)

[t/x ]φ(t1 t2) = ([t/x ]φt1) ([t/x ]φt2)

Where ([t/x ]φt1) is not a λ-abstraction, or both ([t/x ]φt1) and t1 are λ-abstractions,
or ctypeφ(x, t1) is undefined.

[t/x ]φ(t1 t2) = [([t/x ]φt2)/y ]φ
′′

s′1
Where ([t/x ]φt1) ≡ λy : φ′′.s′1 for some y , s′1, and φ′′ and ctypeφ(x, t1) = φ′′ → φ′.

[t/x ]φ(t′[φ′]) = ([t/x ]φt′)[φ′]
Where [t/x ]φt′ is not a type abstraction or t′ and [t/x ]φt′ are type abstractions.

[t/x ]φ(t′[φ′]) = [φ′/X ]s′1
Where [t/x ]φt′ ≡ ΛX : ∗l .s′1, for some X , s′1 and Γ ` φ′ : ∗q , such that, q ≤ l and
ctypeφ(x, t′) = ∀X : ∗l .φ

′′.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSF

Lemma (Properties of ctypeφ)

i. If Γ, x : φ, Γ′ ` t : φ′ and ctypeφ(x , t) = φ′′ then head(t) = x,
φ′ ≡ φ′′, and φ′ ≤Γ,Γ′ φ.

ii. If Γ, x : φ, Γ′ ` t1 t2 : φ′, Γ ` t : φ, [t/x ]φt1 = λy : φ1.q, and t1 is not
then there exists a type ψ such that ctypeφ(x , t1) = ψ.

iii. If Γ, x : φ, Γ′ ` t ′[φ′′] : φ′, Γ ` t : φ, [t/x ]φt ′ = ΛX : ∗l .t ′′, and t ′ is
not then there exists a type ψ such that ctypeφ(x , t ′) = ψ.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSF

All the properties of the hereditary substitution function are
exactly the same as for STLC. Their proofs only differ.
The interpretation of types is exactly as for STLC.

Lemma (Substitution for the Interpretation of Types)

If n′ ∈ [[φ′]]Γ,x :φ,Γ′ , n ∈ [[φ]]Γ, then [n/x ]φn′ ∈ [[φ′]]Γ,Γ′ .

Theorem (Type Soundness)

If Γ ` t : φ then t ∈ [[φ]]Γ.

Corollary (Normalization)

If Γ ` t : φ then t  ! n.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Stratified System Fω

Definition (Syntax for SSFω)

K := K → K | ∗0 | ∗1 | . . .
φ := X | φ→ φ | ∀X : K .φ | λX : ∗l .φ | φ φ
t := x | λx : φ.t | t t | ΛX : K .t | t [φ]

Definition (Operational Semantics for SSFω)

(ΛX : K .t)[φ]  [φ/X ]t
(λx : φ.t) t ′  [t ′/x ]t
(λX : ∗l .φ) φ′  [φ′/x ]φ

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Stratified System Fω

Definition (Kinding Rules)

Γ ` φ1 : ∗p Γ ` φ2 : ∗q

Γ ` φ1 → φ2 : ∗max(p,q)

Γ,X : ∗q ` φ : ∗p

Γ ` ∀X : ∗q .φ : ∗max(p,q)+1

Γ Ok
p ≤ q Γ(X) = ∗p

Γ ` X : ∗q

Γ,X : K1 ` φ : K2

Γ ` λX : K1.φ : K1 → K2

Γ ` φ1 : K1 → K2 Γ ` φ2 : K1

Γ ` φ1 φ2 : K2

Definition (Type-Checking Rules)

Γ(x) = φ Γ Ok
Γ ` x : φ

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2

Γ ` t1 : φ1 → φ2
Γ ` t2 : φ1

Γ ` t1 t2 : φ2

Γ,X : ∗p ` t : φ

Γ ` ΛX : ∗p.t : ∀X : ∗p.φ

Γ ` t : ∀X : ∗l .φ1 Γ ` φ2 : ∗l

Γ ` t[φ2] : [φ2/X ]φ1

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSFω

To prove normalization of SSFω we must first prove normalization
of the type level and then use this knowledge to prove
normalization of the term (program) level.

Normalization of the type level amounts to simply proving
normalization of STLC.

Normalization of the term level is essentially just normalization of
SSF with a new type soundness result.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSFω

Definition (The Construct Kind Function)

ckindK (X ,X ) = K

ckindK (X , φ1 φ2) = K ′

Where ckindK (X , φ1) = K ′′ → K ′.

The construct kind function has all the exact same properties as
the construct type function for STLC.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSFω

Definition (Type-Level Hereditary Substitution Function)

{φ/X}K X = φ

{φ/X}K Y = Y

Where Y is a variable distinct from X .

{φ/X}K (φ1 → φ2) = ({φ/X}Kφ1)→ ({φ/X}Kφ2)

{φ/X}K (∀Y : ∗l .φ
′) = ∀Y : ∗l .{φ/X}Kφ′

{φ/X}K (λY : K1.φ
′) = λY : K1.({φ/X}Kφ′)

{φ/X}K (φ1 φ2) = ({φ/X}Kφ1) ({φ/X}Kφ2)

Where ({φ/X}Kφ1) is not a λ-abstraction, or both ({φ/X}Kφ1)

and φ1 are λ-abstractions, or ckindK (X , φ1) is undefined.

{φ/X}K (φ1 φ2) = {({φ/X}Kφ2)/y}K ′′φ′1

Where ({φ/X}Kφ1) ≡ λY : K ′′.φ′1 for some Y , φ′1, and K ′′ and

ckindK (X , φ1) = K ′′ → K ′.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSFω

The type-level hereditary substitution function has all the exact
same properties as the hereditary substitution function for STLC.
Concluding normalization for the type-level is again identical to
STLC.
All that is left is concluding normalization of the term level.

Definition

First we define when a normal form is a member of the interpretation of normal type φ in context Γ

n ∈ [[φ]]Γ ⇐⇒ Γ ` n : φ,

and this definition is extended to non-normal forms in the following way

t ∈ [[φ]]Γ ⇐⇒ t  ! n ∈ [[φ]]Γ.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSFω

Lemma (Substitution for the Interpretation of Types)

If n′ ∈ [[φ′]]Γ,x :φ,Γ′ , n ∈ [[φ]]Γ, then [n/x ]φn′ ∈ [[φ′]]Γ,Γ′ .

Theorem (Type Soundness Normal Types)

If Γ ` t : φ and φ is normal then t ∈ [[φ]]Γ.

Lemma (Preservation of Types for Kinding)

i. If (Γ, x : φ, Γ′) Ok and φ φ′ then (Γ, x : φ′, Γ′) Ok.
ii. If Γ ` φ : K and φ φ′ then there exists a Γ′ such that Γ′ ` φ′ : K .

Lemma (Preservation of Types for Typing)

If Γ ` t : φ and φ φ′ then there exists a Γ′ such that Γ′ ` t : φ′.

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Normalization of SSFω

Theorem (Type Soundness)

If Γ ` t : φ then φ ! ψ, and there exists a Γ′ such that t ∈ [[ψ]]Γ′ .

Proof.
By regularity we know Γ ` φ : K for some kind K and by normalization
of the type level there exists a normal type ψ such that φ ! ψ.
Finally, by preservation of types for typing there exists a Γ′ such that
Γ′ ` t : ψ. Thus, by type soundness of normal types t ∈ [[ψ]]Γ′ .

Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs



Concluding remarks
We have analyzed several systems.

Simply Typed λ-Calculus (STLC)

Simply Typed λ-Calculus=

An extension of STLC with a primitive notion of equality between types.

Stratified System F (SSF)

Stratified System F+

An extension of SSF with sum types and commuting conversions.

Dependent Stratified System F
An extension of SSF with dependent function types and a primitive notion of
equality between terms.

Stratified System Fω

An extension of SSF with type-level computation.

Future work.
Extend to higher ordinals. Goal: System T.
Look into full System F and type theories with control.

Thank you all of you for listening.
Harley Eades Qualifying Exam 2011

Using the Hereditary Substitution Function in Normalization Proofs


