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Graded Monads & Effects
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•State 
•Exceptions 
•Continuations 
•Partiality 
•Non-termination 
•Errors 
•Non-determinism 
•Input/Output 
•........

Monadic Effects

Lazy  
Languages.
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•State 
•Exceptions 
•Continuations 
•Partiality 
•Non-termination 
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•Non-determinism 
•Input/Output 
•........

Effect Systems
Strict  
Languages.



!6

Combined  
effect systems and 
monads.

Monads + Effect Systems
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Parametric Effect and Indexed Monads  
are now called Graded Monads.
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So, what's a graded monad?
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So, what's a graded monad?
monoids
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Monoids in Sets

M : 1 → 𝖲𝖾𝗍 η : ⊤ → M

μ : M ⊗ M → M
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Monoids in 

M : 1 → 𝒞 η : ⊤ → M

μ : M ⊗ M → M

𝒞
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Monoids in 

M : 1 → 𝒞 η : ⊤ → M

μ : M ⊗ M → M

𝒞
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Monoid-Graded Monoids in 

M : 𝖤 → 𝒞

𝒞
(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2
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Commutative-additive monoid

M : 𝖤 → 𝒞

(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

Monoid-Graded Monoids in 𝒞
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 -indexed family of objects in 𝒞𝖤

M : 𝖤 → 𝒞

(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

Monoid-Graded Monoids in 𝒞
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A monoidal unit

M : 𝖤 → 𝒞

(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

Monoid-Graded Monoids in 𝒞



μe1,e2
: Me1

⊗ Me2
→ Me1+e2
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η : ⊤ → M0

A monoidal multiplication

M : 𝖤 → 𝒞

(𝖤,0,+)

Monoid-Graded Monoids in 𝒞



μe1,e2
: Me1

⊗ Me2
→ Me1+e2
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η : ⊤ → M0

M : 𝖤 → 𝒞

(𝖤,0,+)

Monoid-Graded Monoids in 𝒞
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Graded modalities are indexed-families of 
objects from one monoidal category to the 
another such that their tensor products are 
related in a lax or colax manner.
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Monoids in 

M : 1 → 𝒞 η : ⊤ → M

μ : M ⊗ M → M

𝒞
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Monads

M : 1 → [𝒞, 𝒞] η : 𝖨𝖽 → M

μ : M ∘ M → M



μe1,e2
: Me1

∘ Me2
→ Me1+e2
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η : 𝖨𝖽 → M0

M : 𝖤 → [𝒞, 𝒞]

(𝖤,0,+)

Monoid-Graded Monads 



μe1,e2
: Me1

∘ Me2
→ Me1⊗e2
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η : 𝖨𝖽 → M⊤

M : 𝖤 → [𝒞, 𝒞]

(𝖤, ⊤ , ⊗ )
Graded Monads 
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Example : Environment Monad

ηA : A → MXA

μA : MXMXA → MXAMX(A) = X ⇒ A

MX : 1 → [𝖲𝖾𝗍, 𝖲𝖾𝗍]
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Example : Environment Monad

ηA : A → MXA

μA : MXMXA → MXAMX(A) = X ⇒ A

MX : 1 → [𝖲𝖾𝗍, 𝖲𝖾𝗍]
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Example : Environment Monad

ηA : A → MXA

μA : MXMXA → MXAMX(A) = X ⇒ A

MX : 1 → [𝖲𝖾𝗍, 𝖲𝖾𝗍]
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Example : Powerset Monoid

∅ : ⊤ → 𝒫(X)

∪ : 𝒫(X) ⊗ 𝒫(X) → 𝒫(X)

𝒫(X) : 1 → 𝖲𝖾𝗍
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Example : Graded Environment Monad

ηA : A → M∅A

μA : MXMY A → MX∪Y AMX(A) = X ⇒ A

M : 𝒫(E) → [𝖲𝖾𝗍, 𝖲𝖾𝗍]

>>= : MxA → (A → MYB) → MX∪YB
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Soichiro Fujii
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Typing for Graded Monads
(E, ⊤ , ⊗ , ≤ )Given:
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Graded Comonads & Data Usage
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Data as a Resource
•File handles 
•Communication channels (session typing) 
•Secure data 
•Memory usage 
•Time complexity 
•Ordered data 
•.....
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Data as a Resource
•File handles 
•Communication channels (session typing) 
•Secure data 
•Memory usage 
•Time complexity 
•Ordered data 
•.....

Misusing data can 
lead to various bugs.
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Intuitionistic Linear Logic
Supports the following data-usage constraints:
• Linear usage (one) 
• Affine usage (one or none) 
•Non-linear usage (tons)
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Intuitionistic Linear Logic
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Intuitionistic Linear Logic

What about the spectrum between 
none and tons?

Supports the following data-usage constraints:
• Linear usage (one) 
• Affine usage (one or none) 
•Non-linear usage (tons)



!38

Bounded Linear Logic
Supports the following data-usage constraints:
• none to tons

Time complexity!
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(Simplified) Bounded Linear Logic
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(Simplified) Bounded Linear Logic

The precursor to graded comonads.
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Bounded Linear Logic in a Semiring

•Data-usage annotations are from a semiring 

• Externally graded: no modality, all hypothesis 
are give a grade
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Bounded Linear Logic in a Semiring

(R,1, * ,0,+)Given:
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Graded comonads generalize the 
modality in bounded linear logic to use 
bounded semiring data-usage 
annotations.
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Graded Comonads

• Linear usage (one) 
• Affine usage (one or none) 
•Non-linear usage (tons) 
•None to tons 
• Privacy 
• Time complexity 
• Session typing

Supports the following data-usage constraints:
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Graded Comonads
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Graded Comonads
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Category-Graded Monads



!49

Parameterised Monads

η : A → P(I, I)A

μ : P(I, J)P(J, K)A → P(I, K)A

Monads parameterised by pre and 
post conditions:
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Can graded monads and parameterised 
monads be unified?
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η : A → □𝗂𝖽I
A

μ : □f □g A → □f;g A

Grades are morphisms in a category:

Category-Graded Monads
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Subsume both graded monads and 
parameterised monads.

Category-Graded Monads

D. Orchard, P. Wadler, H. Eades III. "Unifying graded and 
parameterised monads".  Under review MSFP 2020.

https://arxiv.org/abs/2001.10274Preprint:

https://arxiv.org/abs/2001.10274
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Graded Type Theory
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Linear Base

Graded Modalities

Graded Modal Types
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Dependent  
Linear Base

Graded Modalities

Graded Type Theory
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Why Dependent Types?
• Practical programming with graded modalities 

requires dependency. 

• Extrinsic verification.



!57

Why Dependent Types?
map : forall {a : Type, b : Type} 
    . (a -> b) [] 
   -> List a 
   -> List b 
map [f] Empty = Empty; 
map [f] (Cons x xs) = Cons (f x) (map [f] xs)
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map : forall {a : Type, b : Type, n : Nat}  
    . (a -> b) [n] 
   -> Vec n a 
   -> Vec n b 
 map [f] Empty = Empty; 
 map [f] (Cons x xs) = Cons (f x) (map [f] xs)

Why Dependent Types?
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Dependent  
Linear Base

Graded Modalities

Graded Type Theory
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Dependent  
Linear Base

Linear Dependent Types
Long standing open problem!
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Γ1, x : A, Γ2 ⊢ t : B
In the  

subject

In types
Non-Linear Dependent Type Theory:

Linear Dependent Types
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Γ1, x : A, Γ2 ⊢ t : B
Linear in the  

subject

In types ?

Γ3 ⊢ B : Type0 thenIf 

How should inputs be managed?
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Γ1, x : A, Γ2 ⊢ t : B
In the  

subject ?

In types ?

If Γ3 ⊢ B : Typel then
It depends on 

who you talk to!

l > 0and

How should inputs be managed?
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• (McBride & Atkey) Quantitative Type Theory (QTT): 
• Specificational free variables are non-linear 
• Computational free variables are linear 

• (Luo & Zhang) A Linear Dependent Type Theory 
• Use a weaker notion of linearity, but not fully non-

linear

Why?

How should inputs be managed?
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Dream : Users get to decide how their data is 
managed in both computations and 
specifications.

How should inputs be managed?
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Enforce linearity in both computations and 
specifications.

Linear Everywhere Dependent Type 
Theory (LEDTT)
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Every variable must be used:

Linearity across judgments:

Linear Everywhere Dependent Type 
Theory (LEDTT)
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Variable localization:

Linear Everywhere Dependent Type 
Theory (LEDTT)
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∅ ⊢ λa . λx . x : (a : Type0) ⊸ (x : a) ⊸ a

0
2

0

Oh, n
o!

Key Concept: Usability of dependent types requires the 
ability to mix non-dependent types with dependent 
types, but linearity prevents the former leading to an 
unusable system.

Linear Everywhere Dependent Type 
Theory (LEDTT)
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Trivialization:

Linear Everywhere Dependent Type 
Theory (LEDTT)



!71

LEDTT must be relaxed in order to regain 
the expressiveness of dependent types
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Γ1, x :s A, Γ2 ⊢ t : B

Graded Comonads:

Key idea: Double the grades
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Γ1, x :Δs A, Γ2 ⊢ t : B

where                                      is called a usage map.                                                     Δ : 𝖵𝖺𝗋𝗌∙ → ℛ

Key idea: Double the grades



!74

Key idea: Double the grades

Γ1, x :Δ7 A, y : B(x), z : C(x) ⊢ t : D(x)

Δ := {y ↦ 4, z ↦ 42, ∙ ↦ 2}
where
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∅ ⊢ λa . λx . x : (a : 𝖳𝗒𝗉𝖾) ⊸ (x : a) ⊸ a

Example : Polymorphic Identity Function
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∅ ⊢ λ[a] . λ[x] . x : (a :20 𝖳𝗒𝗉𝖾) ⊸ (x :01 a) ⊸ a

Example : Polymorphic Identity Function
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Graded Type Theory (GrDTT)

GrTT = LEDTT + Graded Types

H. Eades III, B. Moon, and D. Orchard. "Graded Type Theory." 
Under review at LICS 2020. 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Demo Time!



Granule Design and Meta-theory
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D. Orchard, V. Liepelt, H. Eades III.  
"Quantitative Program Reasoning with Graded Modal Types."  
In ICFP 2019. 
PDF: http://metatheorem.org/includes/pubs/ICFP19.pdf

http://metatheorem.org/includes/pubs/ICFP19.pdf
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Thank you!
Contacts: 
Twitter: @heades 
Email: harley.eades@gmail.com 
Blog: blog.metatheorem.org

https://granule-project.github.io/

Download & Install Granule

mailto:harley.eades@gmail.com
http://blog.metatheorem.org
https://granule-project.github.io/
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