
Graded Modal Types

Harley Eades III
School of Computer and Cyber Sciences
Augusta University

!2

Granule Project
Team Augusta Team Kent
• Harley Eades III (PI)

• Aubrey Bryant (PhD Student)

• Dominic Orchard (PI)

• Ben Moon (PhD Student)

• Jack Hughes (PhD Student)

!3

Graded Monads & Effects

!4

•State
•Exceptions
•Continuations
•Partiality
•Non-termination
•Errors
•Non-determinism
•Input/Output
•........

Monadic Effects

Lazy
Languages.

!5

•State
•Exceptions
•Continuations
•Partiality
•Non-termination
•Errors
•Non-determinism
•Input/Output
•........

Effect Systems
Strict
Languages.

!6

Combined
effect systems and
monads.

Monads + Effect Systems

!7

Parametric Effect and Indexed Monads
are now called Graded Monads.

!8

So, what's a graded monad?

!9

So, what's a graded monad?
monoids

!10

!11

Monoids in Sets

M : 1 → 𝖲𝖾𝗍 η : ⊤ → M

μ : M ⊗ M → M

!12

Monoids in

M : 1 → 𝒞 η : ⊤ → M

μ : M ⊗ M → M

𝒞

!13

Monoids in

M : 1 → 𝒞 η : ⊤ → M

μ : M ⊗ M → M

𝒞

!14

Monoid-Graded Monoids in

M : 𝖤 → 𝒞

𝒞
(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

!15

Commutative-additive monoid

M : 𝖤 → 𝒞

(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

Monoid-Graded Monoids in 𝒞

!16

 -indexed family of objects in 𝒞𝖤

M : 𝖤 → 𝒞

(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

Monoid-Graded Monoids in 𝒞

!17

A monoidal unit

M : 𝖤 → 𝒞

(𝖤,0,+) η : ⊤ → M0

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

Monoid-Graded Monoids in 𝒞

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

!18

η : ⊤ → M0

A monoidal multiplication

M : 𝖤 → 𝒞

(𝖤,0,+)

Monoid-Graded Monoids in 𝒞

μe1,e2
: Me1

⊗ Me2
→ Me1+e2

!19

η : ⊤ → M0

M : 𝖤 → 𝒞

(𝖤,0,+)

Monoid-Graded Monoids in 𝒞

!20

Graded modalities are indexed-families of
objects from one monoidal category to the
another such that their tensor products are
related in a lax or colax manner.

!21

Monoids in

M : 1 → 𝒞 η : ⊤ → M

μ : M ⊗ M → M

𝒞

!22

Monads

M : 1 → [𝒞, 𝒞] η : 𝖨𝖽 → M

μ : M ∘ M → M

μe1,e2
: Me1

∘ Me2
→ Me1+e2

!23

η : 𝖨𝖽 → M0

M : 𝖤 → [𝒞, 𝒞]

(𝖤,0,+)

Monoid-Graded Monads

μe1,e2
: Me1

∘ Me2
→ Me1⊗e2

!24

η : 𝖨𝖽 → M⊤

M : 𝖤 → [𝒞, 𝒞]

(𝖤, ⊤ , ⊗)
Graded Monads

!25

Example : Environment Monad

ηA : A → MXA

μA : MXMXA → MXAMX(A) = X ⇒ A

MX : 1 → [𝖲𝖾𝗍, 𝖲𝖾𝗍]

!26

Example : Environment Monad

ηA : A → MXA

μA : MXMXA → MXAMX(A) = X ⇒ A

MX : 1 → [𝖲𝖾𝗍, 𝖲𝖾𝗍]

!27

Example : Environment Monad

ηA : A → MXA

μA : MXMXA → MXAMX(A) = X ⇒ A

MX : 1 → [𝖲𝖾𝗍, 𝖲𝖾𝗍]

!28

Example : Powerset Monoid

∅ : ⊤ → 𝒫(X)

∪ : 𝒫(X) ⊗ 𝒫(X) → 𝒫(X)

𝒫(X) : 1 → 𝖲𝖾𝗍

!29

Example : Graded Environment Monad

ηA : A → M∅A

μA : MXMY A → MX∪Y AMX(A) = X ⇒ A

M : 𝒫(E) → [𝖲𝖾𝗍, 𝖲𝖾𝗍]

>>= : MxA → (A → MYB) → MX∪YB

!30

Soichiro Fujii

!31

Typing for Graded Monads
(E, ⊤ , ⊗ , ≤)Given:

!32

Graded Comonads & Data Usage

!33

Data as a Resource
•File handles
•Communication channels (session typing)
•Secure data
•Memory usage
•Time complexity
•Ordered data
•.....

!34

Data as a Resource
•File handles
•Communication channels (session typing)
•Secure data
•Memory usage
•Time complexity
•Ordered data
•.....

Misusing data can
lead to various bugs.

!35

Intuitionistic Linear Logic
Supports the following data-usage constraints:
• Linear usage (one)
• Affine usage (one or none)
•Non-linear usage (tons)

!36

Intuitionistic Linear Logic

!37

Intuitionistic Linear Logic

What about the spectrum between
none and tons?

Supports the following data-usage constraints:
• Linear usage (one)
• Affine usage (one or none)
•Non-linear usage (tons)

!38

Bounded Linear Logic
Supports the following data-usage constraints:
• none to tons

Time complexity!

!39

(Simplified) Bounded Linear Logic

!40

(Simplified) Bounded Linear Logic

The precursor to graded comonads.

!41

Bounded Linear Logic in a Semiring

•Data-usage annotations are from a semiring

• Externally graded: no modality, all hypothesis
are give a grade

!42

Bounded Linear Logic in a Semiring

(R,1, * ,0,+)Given:

!43

Graded comonads generalize the
modality in bounded linear logic to use
bounded semiring data-usage
annotations.

!44

Graded Comonads

• Linear usage (one)
• Affine usage (one or none)
•Non-linear usage (tons)
•None to tons
• Privacy
• Time complexity
• Session typing

Supports the following data-usage constraints:

!45

Graded Comonads

!46

Graded Comonads

!47

!48

Category-Graded Monads

!49

Parameterised Monads

η : A → P(I, I)A

μ : P(I, J)P(J, K)A → P(I, K)A

Monads parameterised by pre and
post conditions:

!50

Can graded monads and parameterised
monads be unified?

!51

η : A → □𝗂𝖽I
A

μ : □f □g A → □f;g A

Grades are morphisms in a category:

Category-Graded Monads

!52

Subsume both graded monads and
parameterised monads.

Category-Graded Monads

D. Orchard, P. Wadler, H. Eades III. "Unifying graded and
parameterised monads". Under review MSFP 2020.

https://arxiv.org/abs/2001.10274Preprint:

https://arxiv.org/abs/2001.10274

!53

Graded Type Theory

!54

Linear Base

Graded Modalities

Graded Modal Types

!55

Dependent
Linear Base

Graded Modalities

Graded Type Theory

!56

Why Dependent Types?
• Practical programming with graded modalities

requires dependency.

• Extrinsic verification.

!57

Why Dependent Types?
map : forall {a : Type, b : Type}
 . (a -> b) []
 -> List a
 -> List b
map [f] Empty = Empty;
map [f] (Cons x xs) = Cons (f x) (map [f] xs)

!58

map : forall {a : Type, b : Type, n : Nat}
 . (a -> b) [n]
 -> Vec n a
 -> Vec n b
 map [f] Empty = Empty;
 map [f] (Cons x xs) = Cons (f x) (map [f] xs)

Why Dependent Types?

!59

Dependent
Linear Base

Graded Modalities

Graded Type Theory

!60

Dependent
Linear Base

Linear Dependent Types
Long standing open problem!

!61

Γ1, x : A, Γ2 ⊢ t : B
In the

subject

In types
Non-Linear Dependent Type Theory:

Linear Dependent Types

!62

Γ1, x : A, Γ2 ⊢ t : B
Linear in the

subject

In types ?

Γ3 ⊢ B : Type0 thenIf

How should inputs be managed?

!63

Γ1, x : A, Γ2 ⊢ t : B
In the

subject ?

In types ?

If Γ3 ⊢ B : Typel then
It depends on

who you talk to!

l > 0and

How should inputs be managed?

!64

• (McBride & Atkey) Quantitative Type Theory (QTT):
• Specificational free variables are non-linear
• Computational free variables are linear

• (Luo & Zhang) A Linear Dependent Type Theory
• Use a weaker notion of linearity, but not fully non-

linear

Why?

How should inputs be managed?

!65

Dream : Users get to decide how their data is
managed in both computations and
specifications.

How should inputs be managed?

!66

Enforce linearity in both computations and
specifications.

Linear Everywhere Dependent Type
Theory (LEDTT)

!67

Every variable must be used:

Linearity across judgments:

Linear Everywhere Dependent Type
Theory (LEDTT)

!68

Variable localization:

Linear Everywhere Dependent Type
Theory (LEDTT)

!69

∅ ⊢ λa . λx . x : (a : Type0) ⊸ (x : a) ⊸ a

0
2

0

Oh, n
o!

Key Concept: Usability of dependent types requires the
ability to mix non-dependent types with dependent
types, but linearity prevents the former leading to an
unusable system.

Linear Everywhere Dependent Type
Theory (LEDTT)

!70

Trivialization:

Linear Everywhere Dependent Type
Theory (LEDTT)

!71

LEDTT must be relaxed in order to regain
the expressiveness of dependent types

!72

Γ1, x :s A, Γ2 ⊢ t : B

Graded Comonads:

Key idea: Double the grades

!73

Γ1, x :Δs A, Γ2 ⊢ t : B

where is called a usage map. Δ : 𝖵𝖺𝗋𝗌∙ → ℛ

Key idea: Double the grades

!74

Key idea: Double the grades

Γ1, x :Δ7 A, y : B(x), z : C(x) ⊢ t : D(x)

Δ := {y ↦ 4, z ↦ 42, ∙ ↦ 2}
where

!75

∅ ⊢ λa . λx . x : (a : 𝖳𝗒𝗉𝖾) ⊸ (x : a) ⊸ a

Example : Polymorphic Identity Function

!76

∅ ⊢ λ[a] . λ[x] . x : (a :20 𝖳𝗒𝗉𝖾) ⊸ (x :01 a) ⊸ a

Example : Polymorphic Identity Function

!77

Graded Type Theory (GrDTT)

GrTT = LEDTT + Graded Types

H. Eades III, B. Moon, and D. Orchard. "Graded Type Theory."
Under review at LICS 2020. 

!78

Demo Time!

Granule Design and Meta-theory

!79

D. Orchard, V. Liepelt, H. Eades III.
"Quantitative Program Reasoning with Graded Modal Types."
In ICFP 2019. 
PDF: http://metatheorem.org/includes/pubs/ICFP19.pdf

http://metatheorem.org/includes/pubs/ICFP19.pdf

!80

Thank you!
Contacts:
Twitter: @heades
Email: harley.eades@gmail.com
Blog: blog.metatheorem.org

https://granule-project.github.io/

Download & Install Granule

mailto:harley.eades@gmail.com
http://blog.metatheorem.org
https://granule-project.github.io/

!81

Backup Slides

