
Advancing
PL Based Formal Methods
Research and Education

Harley Eades III
Computer Science

School of Computer and Cyber Sciences
Augusta University

 1

Who is this guy?
• Ph.D. - Theoretical Computer Science, University of

Iowa, 2014

• Thesis: The Semantic Analysis of Advanced
Programming Languages

• Now: Research Faculty at Augusta University

 2

Research Interests

 3

• Computational Logic
• Foundations of Programming Languages
• Software Verification
• Interactive/Automated Theorem Proving
• Pure and Applied Mathematics

Overall Research Goals

 4

Advance the theory of programming languages
and interactive theorem proving so that it is
more applicable to real-world problems.

Overall Research Goals

 5

Applying the theory of programming languages
and interactive theorem proving to new areas of
computer science.

Threat Analysis
using

Attack Trees

 6

 7

Autonomous
Vehicle Attack

 8

Autonomous
Vehicle Attack

External Sensor
Attack Over Night Attack

 9

Autonomous
Vehicle Attack

External Sensor
Attack

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

Compromise
Vehicle

Over Night Attack

 10

Pose as Mechanic Install Malware Break into Car Install Malware

Autonomous
Vehicle Attack

External Sensor
Attack

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

Compromise
Vehicle

Over Night Attack

 11

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Pose as
Mechanic Install Malware Break into Car Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Compromise
Vehicle

Over Night
Attack

Find Address of
Cars Location

Find Address of
Cars Location

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 12

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

5

1520

8 5

12 25

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 13

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Find Address of
Cars Location

Compromise
Vehicle

Over Night
Attack

8

5

1520

8 5

12 25

Find Address of
Cars Location

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 14

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

15 5

1520

8 5

12 258

Find Address of
Cars Location

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 15

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

12

15

25

12

15 5

1520

8 5

12 258

 16

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

 17

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

 18

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

 20

Base	Attack

Concurrency	Operator

Break Window Disable Door
Alarm/Locks

Install MalwarePose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Find Address of
Cars Location

 21

Attack Trees in Resource-Sensitive
Logics

Resource-Sensitive Logics:
• Model Resource Critical Systems as Formulas
• Prove Properties about the Modeled Systems

by Proving Properties about Formulas
• Understands Concurrency
• Formally Controls Duplication of Resources

 22

Attack Trees in Resource-
Sensitive Logics

Reasoning about Attack Trees:

• Model Attack Trees as Formulas in Resource-
Sensitive Logics

• Prove Properties about Attack Trees by Proving
Properties about Formulas

• Respects the Concurrency Perspective of
Attack Trees

 23

 24

Lina: An EDSL for Threat
Analysis

• Embedded Domain Specific Functional Programming
Languages

• Host Language: Haskell

• Compositional Attack Tree Specification Language

• Automated Reasoning about Attack Trees using
Maude and SMT

• Open Source and Available on Github: https://
github.com/MonoidalAttackTrees/Lina

 25

https://github.com/MonoidalAttackTrees/Lina
https://github.com/MonoidalAttackTrees/Lina

 26

Lina: An EDSL for Threat
Analysis

Lina: An EDSL for Threat
Analysis

 27

Lina: An EDSL for Threat
Analysis

 28

Lina: An EDSL for Threat
Analysis

 29

Lina: An EDSL for Threat
Analysis

 30

Lina: An EDSL for Threat
Analysis

 31

Lina: An EDSL for Threat
Analysis

 32

Lina: An EDSL for Threat
Analysis

• Query Attack Trees for:
• Most Likely Attack
• Least Likely Attack
• Set of all Attacks

• Prove Properties of Attack Trees using Logical
Theory:

• Equivalence of Attack Trees
• Specializations

 33

Lina: An EDSL for Threat
Analysis

 34

Lina: An EDSL for Threat
Analysis

 35

Lina in the Future

 36

• Attack Trees as Comonads?
• Developing a benchmarking library using random

generation of attack trees via QuickCheck.

Takeaways
• Attack Trees are used to assess threat of security

critical systems
• Attack Trees are process trees.
• Attack Trees can be modeled as formulas in

resource-sensitive logics.
• Analysis of Attack Trees can be automated using

their logical semantics.
• Lina is a functional programming language that

supports this new perspective.

 37

Resource-Sensitive
Dependent Types

 38

Joint Work with:
Dominic Orchard and Vilem Liepelt, University of Kent

Resource-Sensitive Logics
• Resource-Sensitive Logics = Substructural Logics

• Linear, Affine, Contractive, Non-commutative
Logic

• Limit how hypothesis (variables) are used to control
resources
• Control structural rules for exchange, weakening

and contraction

 39

The Structural Rules

 40

The Structural Rules

 41

The Structural Rules

 42

Resource-Sensitive Logics

 43

• Lambek Calculus = STLC - Ex - Weak - Contract
• Linear Logic = STLC - Weak - Contract
• Affine Logic = STLC - Contract
• Contractive Logic = STLC - Weak

Resource-Sensitive Logics

 44

• Linear Logic = Lambek Calculus + Ex
• Affine Logic = Linear Logic + Weak
• Contractive Logic = Linear Logic + Contract
• STLC = Linear Logic + Weak + Contract

What Types of Resources?

Examples:
• Memory consumption,
• State-based systems,
• Time complexity, etc.

 45

Dependent Types

 46

Dependent Types

 47

• Write programs and prove them correct in the same
language.
• Specifications for programs are sets of

dependent types.
• Writing programs with these dependent types is

equivalent to proving each property in the
specification.

• Type checking these programs machine checks
your proofs.

Dependent Types

 48

Not resource sensitive; has all of the structural rules!

Resource-Sensitive
Dependent Types

 49

Generalize Linear Logic to a Dependent-Type System

 50

Easier said than done!

 51

 52

Resource-Sensitive
Dependent Types

Naive linear dependent type theory is unusable.

 53

Resource-Sensitive
Dependent Types

We need an mechanism to relax the
system when we want.

 54

Resource-Sensitive
Dependent Types

Naive Linear Dependent Type Theory
+

Graded Modalities

Our Solution:

 55

Resource-Sensitive
Dependent Types

Graded Modalities: programmer precisely
controls the usage of variables.

 56

 57

 58

Type Level Usage

Program Level Usage

Education

 59

Overall Education Goals

 60

Incorporating formal-methods reasoning
principles and techniques into the primary -
university CS education.

Overall Education Goals

 61

Exploiting formal-methods research to develop
new education tools to make learning and
teaching easier for students and educators
respectively.

The Pull CS Back
Initiative

 62

The Pull CS Back Initiative

 63

The goal is to assistant CS primary school through secondary
school educators with little CS background incorporate CS
topics into their curriculum.

The Pull CS Back Initiative

 64

Masters Degree:
• Broadly introduce educators to CS topics and

its pedagogy.
• Fast: One year
• Collaboration between CS department and

college of education.

The Pull CS Back Initiative

 65

Pullback Seminar:
• An inclusive environment anyone can

participate in to learn about CS education
topics.

• Open to the public
• Free!
• A way for non-university educators to keep

learning about CS.

Education Tools

 66

Disco Lang
• A language designed to bring

functional programming and
formal methods into discrete
mathematics.

• Syntax must be based on prior
mathematical knowledge.

• Good errors messages are
extremely important.

• Joint work with Brent Yorgey,
Hendrix College.

 67

Haskell QuickGrader

 68

• An auto grader for Haskell assignments.
• Grading is done using the QuickCheck library.
• Incorporated into a Gitlab server.
• Students just push on solution branch to

trigger grading, and report is generated and
pushed back.

