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Who is this guy?
• Ph.D. - Theoretical Computer Science, University of 

Iowa, 2014 

• Thesis: The Semantic Analysis of Advanced 
Programming Languages 

• Now: Research Faculty at Augusta University
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Research Interests
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• Computational Logic 
• Foundations of Programming Languages 
• Software Verification 
• Interactive/Automated Theorem Proving 
• Pure and Applied Mathematics



Overall Research Goals

 4

Advance the theory of programming languages 
and interactive theorem proving so that it is 
more applicable to real-world problems.



Overall Research Goals

 5

Applying the theory of programming languages 
and interactive theorem proving to new areas of 
computer science.



Threat Analysis  
using  

Attack Trees
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Attack Trees in Resource-Sensitive 
Logics

Resource-Sensitive Logics: 
• Model Resource Critical Systems as Formulas 
• Prove Properties about the Modeled Systems 

by Proving Properties about Formulas 
• Understands Concurrency 
• Formally Controls Duplication of Resources
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Attack Trees in Resource-
Sensitive Logics

Reasoning about Attack Trees: 

• Model Attack Trees as Formulas in Resource-
Sensitive Logics 

• Prove Properties about Attack Trees by Proving 
Properties about Formulas 

• Respects the Concurrency Perspective of 
Attack Trees
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Lina: An EDSL for Threat 
Analysis

• Embedded Domain Specific Functional Programming 
Languages  

• Host Language: Haskell 

• Compositional Attack Tree Specification Language 

• Automated Reasoning about Attack Trees using 
Maude and SMT 

• Open Source and Available on Github: https://
github.com/MonoidalAttackTrees/Lina
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https://github.com/MonoidalAttackTrees/Lina
https://github.com/MonoidalAttackTrees/Lina
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Lina: An EDSL for Threat 
Analysis

• Query Attack Trees for: 
• Most Likely Attack 
• Least Likely Attack 
• Set of all Attacks 

• Prove Properties of Attack Trees using Logical 
Theory: 

• Equivalence of Attack Trees 
• Specializations
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Lina in the Future
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• Attack Trees as Comonads? 
• Developing a benchmarking library using random 

generation of attack trees via QuickCheck.



Takeaways
• Attack Trees are used to assess threat of security 

critical systems 
• Attack Trees are process trees. 
• Attack Trees can be modeled as formulas in 

resource-sensitive logics. 
• Analysis of Attack Trees can be automated using 

their logical semantics. 
• Lina is a functional programming language that 

supports this new perspective.
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Resource-Sensitive 
Dependent Types
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Joint Work with: 
Dominic Orchard and Vilem Liepelt, University of Kent



Resource-Sensitive Logics
• Resource-Sensitive Logics = Substructural Logics 

• Linear, Affine, Contractive, Non-commutative 
Logic 

• Limit how hypothesis (variables) are used to control 
resources 
• Control structural rules for exchange, weakening 

and contraction
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The Structural Rules
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The Structural Rules
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The Structural Rules
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Resource-Sensitive Logics
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• Lambek Calculus = STLC - Ex - Weak - Contract 
• Linear Logic = STLC - Weak - Contract 
• Affine Logic = STLC - Contract 
• Contractive Logic = STLC - Weak



Resource-Sensitive Logics
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• Linear Logic = Lambek Calculus + Ex 
• Affine Logic = Linear Logic + Weak 
• Contractive Logic = Linear Logic + Contract 
• STLC = Linear Logic + Weak + Contract



What Types of Resources?

Examples: 
• Memory consumption, 
• State-based systems, 
• Time complexity, etc.
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Dependent Types
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Dependent Types
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• Write programs and prove them correct in the same 
language. 
• Specifications for programs are sets of 

dependent types. 
• Writing programs with these dependent types is 

equivalent to proving each property in the 
specification. 

• Type checking these programs machine checks 
your proofs.



Dependent Types
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Not resource sensitive; has all of the structural rules!



Resource-Sensitive 
Dependent Types
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Generalize Linear Logic to a Dependent-Type System
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Easier said than done!
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Resource-Sensitive 
Dependent Types

Naive linear dependent type theory is unusable.
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Resource-Sensitive 
Dependent Types

We need an mechanism to relax the 
system when we want.
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Resource-Sensitive 
Dependent Types

Naive Linear Dependent Type Theory 
+ 

Graded Modalities

Our Solution:
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Resource-Sensitive 
Dependent Types

Graded Modalities: programmer precisely 
controls the usage of variables.
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Type Level Usage

Program Level Usage



Education
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Overall Education Goals

 60

Incorporating formal-methods reasoning 
principles and techniques into the primary - 
university CS education.



Overall Education Goals

 61

Exploiting formal-methods research to develop 
new education tools to make learning and 
teaching easier for students and educators 
respectively.



The Pull CS Back 
Initiative
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The Pull CS Back Initiative
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The goal is to assistant CS primary school through secondary 
school educators with little CS background incorporate  CS 
topics into their curriculum.



The Pull CS Back Initiative
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Masters Degree: 
• Broadly introduce educators to CS topics and 

its pedagogy. 
• Fast: One year 
• Collaboration between CS department and 

college of education. 



The Pull CS Back Initiative
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Pullback Seminar: 
• An inclusive environment anyone can 

participate in to learn about CS education 
topics. 

• Open to the public 
• Free! 
• A way for non-university educators to keep 

learning about CS.



Education Tools
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Disco Lang
• A language designed to bring 

functional programming and 
formal methods into discrete 
mathematics. 

• Syntax must be based on prior 
mathematical knowledge. 

• Good errors messages are 
extremely important. 

• Joint work with Brent Yorgey, 
Hendrix College.
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Haskell QuickGrader
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• An auto grader for Haskell assignments. 
• Grading is done using the QuickCheck library. 
• Incorporated into a Gitlab server. 
• Students just push on solution branch to 

trigger grading, and report is generated and 
pushed back.


