On Linear Logic,
Functional Programming,
and Attack Irees

Harley Eades lII Jiaming Jiang Aubrey Bryant
Augusta University North Carolina State Augusta University

University

How | Approach Problems

Category Programming
Theory Languages

The Three Perspectives of Computation

What is an attack tree”

When are we allowed to modity an attack tree”

Autonomous
Vehicle Attack

Autonomous
Vehicle Attack

External Sensor
Attack

Over Night Attack

Autonomous
Vehicle Attack

External Sensor

Attack Over Night Attack

Modify Street Signs Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

Autonomous
Vehicle Attack

External Sensor
Attack

Over Night Attack

Modify Street Signs Social Engineering
to Cause Wreck Attack

Pose as Mechanic Install Malware Break into Car Install Malware

Find Address of Compromise
Cars Location Vehicle

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as

Install Malware Break into Car | Install Malware

Mechanic

Disable Door
Alarm/Locks

Break Window

Autonomous

Vehicle Attack

External Over Night
Sensor Attack Attack

Modify Street Signs | Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

G S -

Poseas 1 |nstall Malware Break into Car | Install Malware

Mechanic
Disable Door !

Break Window Alarm/Locks

10

Autonomous

Vehicle Attack

External Over Night
Sensor Attack Attack

Modify Street Signs | Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

G S -

Poseas 1 |nstall Malware Break into Car | Install Malware

Mechanic
Disable Door !

Break Window Alarm/Locks

11

Autonomous

Vehicle Attack

External Over Night

Sensor Attack Attack
Modify Street Signs | Social Engineering Find Address of Compromise

to Cause Wreck Attack Cars Location Vehicle

Pose as '
Mechanic

5

Install Malware Break into Car | Install Malware

Disable Door !

Break Window Alarm/Locks

12

Autonomous

Vehicle Attack

External Over Night !

Sensor Attack Attack

Car s (o (o) <

Modify Street Signs | Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

Pose as '
Mechanic

5

Install Malware Break into Car | Install Malware

Disable Door !

Break Window Alarm/Locks

13

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as

Install Malware Break into Car | Install Malware

Mechanic

Disable Door
Alarm/Locks

Break Window

14

Autonomous

Vehicle Attack

External
Sensor Attack

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as
Mechanic

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Break into Car | Install Malware

Install Malware

Disable Door
Alarm/Locks

Break Window

15

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Install Malware

Pose as Break into Car | Install Malware

Mechanic

Disable Door
Alarm/Locks

Break Window

16

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as

_ Break into Car | Install Malware
Mechanic

Install Malware

Disable Door
Alarm/Locks

Break Window

17

| I Concurrency Operator

Base Attack

\._} Modify Street Signs Find Address of
| to Cause Wreck

Cars Location

Pose as

: Install Malware Install Malware
Mechanic

Disable Door
Alarm/Locks

Break Window

18

A = “Modify Street Signs to Cause Wreck*
B = “Pose as Mechanic®

C' = “Install Malwarc*

1) = “Find Address of Cars Location*
E = “Break Window*

F' = “Disable Door Alarm/Locks*

(A (BoOC)U(D>(FUF)>CO))

19

Attack Trees in Resource-Sensitive

Logics

Resource-Sensitive Logics:

Model Resource Critical Systems as Formulas

Prove Properties about the Modeled Systems
by Proving Properties about Formulas

Understands Concurrency

Formally Controls Duplication of Resources

20

Attack lrees In Resource-
Sensitive Logics

Reasoning about Attack Irees:

* Model Attack Trees as Formulas in Resource-
Sensitive Logics

* Prove Properties about Attack Trees by Proving
Properties about Formulas

* Respects the Concurrency Perspective of
Attack Trees

21

Quaternary Semantics of
Attack Irees

e Four-Valued Truth Table Semantics
e [ntultionistic
* Proofs are simple

e Resource Sensitive

22

Quaternary Semantics of
Attack Irees

Supports Specializations [Horne et al.:2016]:
Prove implications between attack trees that

take into consideration both the logical
structure of the tree and the attribute domain.

23

Quaternary Semantics of
Attack Irees

Two Types of Semantics [Horne et al.:2016]:
* |deal Semantics

 Filter Semantics

24

|[deal Quaternary Semantics
of Attack Trees

Truth tables over propositional variables:

1 1
A,Be {0—,—,1}
4° 2

25

|[deal Quaternary Semantics
of Attack Trees

Choice: Parallel:
A U; B = max(A, B) 00,B=0
AO;0=0
Sequence: A B=1
0>, B=0
Ap>;0=0

1 1
A>;B=—,whenA € {—,1}
2 2

20

|[deal Quaternary Semantics
of Attack Trees

Logical Sequent (implication) is a Partial Ordering:
A<,B

Equivalence of Attack Trees:
A=B iff (A<,B)and (B <, A)

27

|[deal Quaternary Semantics
of Attack Trees

Basic Properties for Choice:
A <, (AL B)

B <, AU B)

AU, B)=BUA)

(A B, CO) =AU BU0))

fA<,Cand B <, D,then(AU, B) <, (CU; D)

28

|[deal Quaternary Semantics
of Attack Trees

Basic Properties for Parallel:
AQ,A) #A
(A®, B) = (B O, A)
(AO;B)O;C)=A0;BO;0))
fA<,Cand B <, D,then(A0;B) <,(CO,D)
AQ;(BU;C)=((A0O;B)L;(A©,0))

29

|[deal Quaternary Semantics
of Attack Trees

Basic Properties for Sequence:
A, A) £ A
(A>; B)Z (B>, A)
(A, (Br>;C)) =(A>; B)>; ()
fA <, Cand B <, D, then (A >; B) <, (C>; D)
A>; (BU;C)=((A>; B)U; (A, ())

30

|[deal Quaternary Semantics
of Attack Trees

|deal Properties [Horne et al.:2016]:
(AO;B)>;(CO; D)) X, (A>;C) O;(Br>; D))

(AQ;B)>;C) <4, (AQ; (B> ())
A, (BO,C) <, (BO, (A, C))
(A>; B) <, (A ©; B)

Note: Not equivalences!

31

Filterish Quaternary
Semantics of Attack Trees

Choice: Parallel:

A Uz B = max(A, B) 00B=0
Sequence: 1
O0>-B=0 AQFB=E
A>r0=0

A>p,B=1,whenAe {1,1}

1 1 2

4 4

32

Filterish Quaternary
Semantics of Attack Trees

Same basic properties for each form of composition.

33

Filterish Quaternary
Semantics of Attack Trees

Filter properties that hold [Horne et al.:2016]:
(AbpC)OrB>rD)) <, (AOrB)>r (COp D))

AOC(B>r()) <, (AOrB)B>;C)

Filter properties that fail [Horne et al.:2016]:
AD>rBOr()) £, (BOrAPBr())
(A>yp B) <, (AOfB)

34

Filterish Quaternary
Semantics of Attack Trees

Question:
Can we define a quaternary semantics
that is complete for all of the filter
properties?

35

PL Theory for Threat
Analysis

Question:
Can we use the theory of programming languages to
build new (semi-)automated tools for conducting threat
analysis in a semantically valid way"

36

Lina: An EDSL for Threat
Analysis

Embedded Domain Specitic Functional Programming
Languages

* Host Language: Haskell
Compositional Attack Tree Specification Language

Automated Reasoning about Attack Irees using
Maude (Quaternary Semantics) and SMT

Open Source and Available on Github: https://
github.com/MonoidalAttackTrees/Lina

37

https://github.com/MonoidalAttackTrees/Lina
https://github.com/MonoidalAttackTrees/Lina

| Ina: Now andad Later

Graphical Randomized
Editors Testing
Interactive Interface
Language

SMT

External
Tools

Note: Blue nodes correspond to future additions.

38

How can Lina be Used?”?

By humans: manually code and conduct threat
analysis.

* |nteractive querying interface.

By machines: as a target for other threat analysis
tools; for example, after autogenerating attack trees.

39

Lina: An EDSL for Threat
Analysis

import Lina.AttackTree

vehicle_attack :: APAttackTree Double String
vehicle_attack = start_PAT §
or_node "Autonomous Vehicle Attack"
(seq_node "External Sensor Attack"
(base_wa 0.2 "Modify Street Signs to Cause Wreck")
(and_node "Social Engineering Attack"
(base_wa 0.6 "Pose as Mechanic")
(base_wa 0.1 "Install Malware")))
(seq_node "Over Night Attack"
(base_wa 0.05 "Find Address where Car is Stored")
(seg_node "Compromise Vehicle"
(or_node "Break In"
(base_wa 0.8 "Break Window")
(base_wa 0.5 "Disable Door Alarm/Locks"))
(base_wa 0.1 "Install Malware")))

40

Lina: An EDSL for Threat
Analysis

se_attack :: APAttackTree Double String
se_attack = start_PAT §
and_node "social engineering attack"
(base_wa 0.6 "pose as mechanic")
(base_wa 0.1 "install malware")

bi_attack :: APAttackTree Double String
bi_attack = start_PAT $
or_node "break in"
(base_wa 0.8 "break window")
(base_wa 0.5 "disable door alarm/locks")

cv_attack :: APAttackTree Double String
cv_attack = start_PAT $
seq_node "compromise vehicle"
(insert bi_attack)
(base_wa 0.1 "install malware")

es_attack :: APAttackTree Double String
es_attack = start_PAT 3
seq_node "external sensor attack"”
(base_wa 0.2 "modify street signs to cause
wreck")
(insert se_attack)

on_attack :: APAttackTree Double String
on_attack = start_PAT §$
seq_node "overnight attack"
(base_wa 0.05 "Find address where car
is stored")
(insert cv_attack)

vehicle_attack’’ APAttackTree Double String
vehicle_attack’’ = start_PAT §$
or_node "Autonomous Vehicle Attack"
(insert es_attack)
(insert on_attack)

41

Lina: An EDSL for Threat
Analysis

—— Internal Attack Tree
data IAT where

Base :: ID —> IAT
OR »: ID — IAT —> IAT —> IAT
AND :: ID —> IAT —> IAT —> IAT
SEQ :: ID — IAT —> IAT —> IAT

42

Lina: An EDSL for Threat
Analysis

—— Attributed Process Attack Tree

data APAttackTree attribute label = APAttackTree {
process_tree :: IAT,
labels :: B.Bimap label ID,
attributes :: M.Map ID attribute

}

43

Lina: An EDSL for Threat
Analysis

—— Full Attack Tree

data AttackTree attribute label = AttackTree {
ap_tree :: APAttackTree attribute label,
configuration :: Conf attribute

44

Lina: An EDSL for Threat
Analysis

data ConfT attribute

= (Ord attribute) => Conf {

orOp :: attribute —> attribute —> attribute,
andOp :: attribute —> attribute —> attribute,
seqOp :: attribute —> attribute —> attribute

}

45

Lina: An EDSL for Threat
Analysis

—— Full Attack Tree

data AttackTree attribute label = AttackTree {
ap_tree :: APAttackTree attribute label,
configuration :: Conf attribute

46

L ina: An EDSL for Threat
Analysis

* Query Attack Trees for:
 Most Likely Attack
[east Likely Attack
e OSet of all Attacks

* Prove Properties of Attack Trees using Logical
Theory:

e Equivalence of Attack Trees

* Specializations

47

Lina: An EDSL for Threat
Analysis

> :load source/Lina/Examples/VehicleAttack.hs

Ok, meodules loaded
> get_attacks § vehicle AT

48

Lina: An EDSL for Threat
Analysis

SEQ("external sensor attack",0.6)
("modify street signs to cause wreck",0.2)
(AND("social engineering attack",0.6)
("pose as mechanic",0.6)

n s

("install malware",0.1))

SEQ("over night attack",0.8)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.8)
("break window",0.8)
"install malware",0.1))

SEQ("over night attack",0.5)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.5)
("disable decor alarm/locks",0.5)
"install malware",0.1))

49

Future Work

Two new new formal model of causal attack trees:
e Petri Net Model

» Categorically shown that this is a model of
linear logic

« Causal Attack Tree Expressions

e Attack trees as “regular” expressions Iin
Pomset automata based in the concurrent
Kleene algebra

50

Future Work

o Attack Trees as Comonads?

* Developing a benchmarking library using random
generation of attack trees via QuickCheck.

 Randomized Property based testing of

threat ana

e (Generate

ysis algorithms

arge trees during testing

51

lakeaways

e Attack Trees can be modeled as formulas In
resource-sensitive logics.

* Analysis of Attack Trees can be automated using
their logical semantics.

* Lina is a functional programming language that
supports this new perspective.

52

