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How I Approach Problems
Logic

Category 
Theory

Programming 
Languages

≅

The Three Perspectives of Computation
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What is an attack tree?
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When are we allowed to modify an attack tree?
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Attack Trees in Resource-Sensitive 
Logics

Resource-Sensitive Logics: 
• Model Resource Critical Systems as Formulas 
• Prove Properties about the Modeled Systems 

by Proving Properties about Formulas 
• Understands Concurrency 
• Formally Controls Duplication of Resources
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Attack Trees in Resource-
Sensitive Logics

Reasoning about Attack Trees: 

• Model Attack Trees as Formulas in Resource-
Sensitive Logics 

• Prove Properties about Attack Trees by Proving 
Properties about Formulas 

• Respects the Concurrency Perspective of 
Attack Trees

 21



Quaternary Semantics of 
Attack Trees

• Four-Valued Truth Table Semantics 

• Intuitionistic 

• Proofs are simple 

• Resource Sensitive
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Quaternary Semantics of 
Attack Trees

Supports Specializations [Horne et al.:2016]: 

Prove implications between attack trees that 
take into consideration both the logical 
structure of the tree and the attribute domain.
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Quaternary Semantics of 
Attack Trees

Two Types of Semantics [Horne et al.:2016]: 

• Ideal Semantics 

• Filter Semantics
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Ideal Quaternary Semantics 
of Attack Trees

Truth tables over propositional variables:

A, B ∈ {0,
1
4

,
1
2

,1}
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Ideal Quaternary Semantics 
of Attack Trees

A ⊔I B = 𝗆𝖺𝗑(A, B)
Choice:

0 ⊙I B = 0
A ⊙I 0 = 0
A ⊙I B = 1

Parallel:

0 ⊳I B = 0
A ⊳I 0 = 0

A ⊳I B =
1
2

, when A ∈ {
1
2

,1}

Sequence:

 26



Ideal Quaternary Semantics 
of Attack Trees

Logical Sequent (implication) is a Partial Ordering:
A ≤4 B

Equivalence of Attack Trees:
(A ≤4 B) and (B ≤4 A)A ≡ B iff

 27



Ideal Quaternary Semantics 
of Attack Trees

Basic Properties for Choice:

(A ⊔I B) ≡ (B ⊔I A)
((A ⊔I B) ⊔I C) ≡ (A ⊔I (B ⊔I C))
If A ≤4 C and B ≤4 D, then (A ⊔I B) ≤4 (C ⊔I D)

A ≤4 (A ⊔I B)
B ≤4 (A ⊔I B)
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Ideal Quaternary Semantics 
of Attack Trees

Basic Properties for Parallel:
(A ⊙I A) ≢ A
(A ⊙I B) ≡ (B ⊙I A)
((A ⊙I B) ⊙I C) ≡ (A ⊙I (B ⊙I C))

If A ≤4 C and B ≤4 D, then (A ⊙I B) ≤4 (C ⊙I D)

(A ⊙I (B ⊔I C)) ≡ ((A ⊙I B) ⊔I (A ⊙I C))
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Ideal Quaternary Semantics 
of Attack Trees

(A ⊳I B) ≢ (B ⊳I A)
(A ⊳I A) ≢ A

(A ⊳I (B ⊳I C)) ≡ ((A ⊳I B) ⊳I C)
If A ≤4 C and B ≤4 D, then (A ⊳I B) ≤4 (C ⊳I D)
(A ⊳I (B ⊔I C)) ≡ ((A ⊳I B) ⊔I (A ⊳I C))

Basic Properties for Sequence:
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Ideal Quaternary Semantics 
of Attack Trees

Ideal Properties [Horne et al.:2016]:
((A ⊙I B) ⊳I (C ⊙I D)) ≤4 ((A ⊳I C) ⊙I (B ⊳I D))
((A ⊙I B) ⊳I C) ≤4 (A ⊙I (B ⊳I C))
(A ⊳I (B ⊙I C) ≤4 (B ⊙I (A ⊳I C))
(A ⊳I B) ≤4 (A ⊙I B)

Note: Not equivalences!
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Filterish Quaternary 
Semantics of Attack Trees

A ⊔F B = 𝗆𝖺𝗑(A, B)
Choice:

0 ⊙F B = 0
A ⊙F 0 = 0

A ⊙F B =
1
2

Parallel:

0 ⊳F B = 0
A ⊳F 0 = 0
A ⊳F B = 1, when A ∈ {

1
2

,1}

Sequence:
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Filterish Quaternary 
Semantics of Attack Trees

Same basic properties for each form of composition.
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Filterish Quaternary 
Semantics of Attack Trees

Filter properties that hold [Horne et al.:2016]:

Filter properties that fail [Horne et al.:2016]:

((A ⊳F C) ⊙F (B ⊳F D)) ≤4 ((A ⊙F B) ⊳F (C ⊙F D))

(A ⊙F (B ⊳F C)) ≤4 ((A ⊙F B) ⊳F C)

(A ⊳F (B ⊙F C)) ≤r (B ⊙F (A ⊳F C))
(A ⊳F B) ≤4 (A ⊙F B)
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Filterish Quaternary 
Semantics of Attack Trees

Question: 
Can we define a quaternary semantics 
that is complete for all of the filter 
properties?
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PL Theory for Threat 
Analysis
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Question: 
Can we use the theory of programming languages to 
build new (semi-)automated tools for conducting threat 
analysis in a semantically valid way?



Lina: An EDSL for Threat 
Analysis

• Embedded Domain Specific Functional Programming 
Languages  

• Host Language: Haskell 

• Compositional Attack Tree Specification Language 

• Automated Reasoning about Attack Trees using 
Maude (Quaternary Semantics) and SMT 

• Open Source and Available on Github: https://
github.com/MonoidalAttackTrees/Lina
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https://github.com/MonoidalAttackTrees/Lina
https://github.com/MonoidalAttackTrees/Lina


Lina: Now and Later
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Lina 
Language Interactive Interface

SMT

MaudeExternal 
Tools

Graphical 
Editors

Note: Blue nodes correspond to future additions.

Randomized 
Testing



How can Lina be Used?
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• By humans: manually code and conduct threat 
analysis. 

• Interactive querying interface. 

• By machines: as a target for other threat analysis 
tools; for example, after autogenerating attack trees.
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Lina: An EDSL for Threat 
Analysis



Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis

• Query Attack Trees for: 
• Most Likely Attack 
• Least Likely Attack 
• Set of all Attacks 

• Prove Properties of Attack Trees using Logical 
Theory: 

• Equivalence of Attack Trees 
• Specializations
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Lina: An EDSL for Threat 
Analysis
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Lina: An EDSL for Threat 
Analysis
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Future Work
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Two new new formal model of causal attack trees: 
• Petri Net Model  

• Categorically shown that this is a model of 
linear logic 

• Causal Attack Tree Expressions 
• Attack trees as “regular” expressions in 

Pomset automata based in the concurrent 
Kleene algebra



Future Work
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• Attack Trees as Comonads? 
• Developing a benchmarking library using random 

generation of attack trees via QuickCheck. 
• Randomized Property based testing of 

threat analysis algorithms 
• Generate large trees during testing



Takeaways
• Attack Trees can be modeled as formulas in 

resource-sensitive logics. 
• Analysis of Attack Trees can be automated using 

their logical semantics. 
• Lina is a functional programming language that 

supports this new perspective.
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