
On Linear Logic,
Functional Programming,

and Attack Trees
Harley Eades III

Augusta University
Jiaming Jiang

North Carolina State
University

Aubrey Bryant
Augusta University

 1

How I Approach Problems
Logic

Category
Theory

Programming
Languages

≅

The Three Perspectives of Computation

 2

What is an attack tree?

 3

When are we allowed to modify an attack tree?

 4

 5

Autonomous
Vehicle Attack

 6

Autonomous
Vehicle Attack

External Sensor
Attack Over Night Attack

 7

Autonomous
Vehicle Attack

External Sensor
Attack

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

Compromise
Vehicle

Over Night Attack

 8

Pose as Mechanic Install Malware Break into Car Install Malware

Autonomous
Vehicle Attack

External Sensor
Attack

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

Compromise
Vehicle

Over Night Attack

 9

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Pose as
Mechanic Install Malware Break into Car Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Compromise
Vehicle

Over Night
Attack

Find Address of
Cars Location

Find Address of
Cars Location

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 10

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

5

1520

8 5

12 25

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 11

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Find Address of
Cars Location

Compromise
Vehicle

Over Night
Attack

8

5

1520

8 5

12 25

Find Address of
Cars Location

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 12

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

15 5

1520

8 5

12 258

Find Address of
Cars Location

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

 13

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

12

15

25

12

15 5

1520

8 5

12 258

 14

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

 15

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

 16

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

Break Window Disable Door
Alarm/Locks

Autonomous
Vehicle Attack

External
Sensor Attack

Break into Car Install Malware

Compromise
Vehicle

Over Night
Attack

Pose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Social Engineering
Attack

Find Address of
Cars Location

 17

 18

Base	Attack

Concurrency	Operator

Break Window Disable Door
Alarm/Locks

Install MalwarePose as
Mechanic Install Malware

Modify Street Signs
to Cause Wreck

Find Address of
Cars Location

 19

Attack Trees in Resource-Sensitive
Logics

Resource-Sensitive Logics:
• Model Resource Critical Systems as Formulas
• Prove Properties about the Modeled Systems

by Proving Properties about Formulas
• Understands Concurrency
• Formally Controls Duplication of Resources

 20

Attack Trees in Resource-
Sensitive Logics

Reasoning about Attack Trees:

• Model Attack Trees as Formulas in Resource-
Sensitive Logics

• Prove Properties about Attack Trees by Proving
Properties about Formulas

• Respects the Concurrency Perspective of
Attack Trees

 21

Quaternary Semantics of
Attack Trees

• Four-Valued Truth Table Semantics

• Intuitionistic

• Proofs are simple

• Resource Sensitive

 22

Quaternary Semantics of
Attack Trees

Supports Specializations [Horne et al.:2016]:

Prove implications between attack trees that
take into consideration both the logical
structure of the tree and the attribute domain.

 23

Quaternary Semantics of
Attack Trees

Two Types of Semantics [Horne et al.:2016]:

• Ideal Semantics

• Filter Semantics

 24

Ideal Quaternary Semantics
of Attack Trees

Truth tables over propositional variables:

A, B ∈ {0,
1
4

,
1
2

,1}

 25

Ideal Quaternary Semantics
of Attack Trees

A ⊔I B = 𝗆𝖺𝗑(A, B)
Choice:

0 ⊙I B = 0
A ⊙I 0 = 0
A ⊙I B = 1

Parallel:

0 ⊳I B = 0
A ⊳I 0 = 0

A ⊳I B =
1
2

, when A ∈ {
1
2

,1}

Sequence:

 26

Ideal Quaternary Semantics
of Attack Trees

Logical Sequent (implication) is a Partial Ordering:
A ≤4 B

Equivalence of Attack Trees:
(A ≤4 B) and (B ≤4 A)A ≡ B iff

 27

Ideal Quaternary Semantics
of Attack Trees

Basic Properties for Choice:

(A ⊔I B) ≡ (B ⊔I A)
((A ⊔I B) ⊔I C) ≡ (A ⊔I (B ⊔I C))
If A ≤4 C and B ≤4 D, then (A ⊔I B) ≤4 (C ⊔I D)

A ≤4 (A ⊔I B)
B ≤4 (A ⊔I B)

 28

Ideal Quaternary Semantics
of Attack Trees

Basic Properties for Parallel:
(A ⊙I A) ≢ A
(A ⊙I B) ≡ (B ⊙I A)
((A ⊙I B) ⊙I C) ≡ (A ⊙I (B ⊙I C))

If A ≤4 C and B ≤4 D, then (A ⊙I B) ≤4 (C ⊙I D)

(A ⊙I (B ⊔I C)) ≡ ((A ⊙I B) ⊔I (A ⊙I C))

 29

Ideal Quaternary Semantics
of Attack Trees

(A ⊳I B) ≢ (B ⊳I A)
(A ⊳I A) ≢ A

(A ⊳I (B ⊳I C)) ≡ ((A ⊳I B) ⊳I C)
If A ≤4 C and B ≤4 D, then (A ⊳I B) ≤4 (C ⊳I D)
(A ⊳I (B ⊔I C)) ≡ ((A ⊳I B) ⊔I (A ⊳I C))

Basic Properties for Sequence:

 30

Ideal Quaternary Semantics
of Attack Trees

Ideal Properties [Horne et al.:2016]:
((A ⊙I B) ⊳I (C ⊙I D)) ≤4 ((A ⊳I C) ⊙I (B ⊳I D))
((A ⊙I B) ⊳I C) ≤4 (A ⊙I (B ⊳I C))
(A ⊳I (B ⊙I C) ≤4 (B ⊙I (A ⊳I C))
(A ⊳I B) ≤4 (A ⊙I B)

Note: Not equivalences!

 31

Filterish Quaternary
Semantics of Attack Trees

A ⊔F B = 𝗆𝖺𝗑(A, B)
Choice:

0 ⊙F B = 0
A ⊙F 0 = 0

A ⊙F B =
1
2

Parallel:

0 ⊳F B = 0
A ⊳F 0 = 0
A ⊳F B = 1, when A ∈ {

1
2

,1}

Sequence:

 32

1
4

⊳F B =
1
4

Filterish Quaternary
Semantics of Attack Trees

Same basic properties for each form of composition.

 33

Filterish Quaternary
Semantics of Attack Trees

Filter properties that hold [Horne et al.:2016]:

Filter properties that fail [Horne et al.:2016]:

((A ⊳F C) ⊙F (B ⊳F D)) ≤4 ((A ⊙F B) ⊳F (C ⊙F D))

(A ⊙F (B ⊳F C)) ≤4 ((A ⊙F B) ⊳F C)

(A ⊳F (B ⊙F C)) ≤r (B ⊙F (A ⊳F C))
(A ⊳F B) ≤4 (A ⊙F B)

 34

Filterish Quaternary
Semantics of Attack Trees

Question:
Can we define a quaternary semantics
that is complete for all of the filter
properties?

 35

PL Theory for Threat
Analysis

 36

Question:
Can we use the theory of programming languages to
build new (semi-)automated tools for conducting threat
analysis in a semantically valid way?

Lina: An EDSL for Threat
Analysis

• Embedded Domain Specific Functional Programming
Languages

• Host Language: Haskell

• Compositional Attack Tree Specification Language

• Automated Reasoning about Attack Trees using
Maude (Quaternary Semantics) and SMT

• Open Source and Available on Github: https://
github.com/MonoidalAttackTrees/Lina

 37

https://github.com/MonoidalAttackTrees/Lina
https://github.com/MonoidalAttackTrees/Lina

Lina: Now and Later

 38

Lina
Language Interactive Interface

SMT

MaudeExternal
Tools

Graphical
Editors

Note: Blue nodes correspond to future additions.

Randomized
Testing

How can Lina be Used?

 39

• By humans: manually code and conduct threat
analysis.

• Interactive querying interface.

• By machines: as a target for other threat analysis
tools; for example, after autogenerating attack trees.

 40

Lina: An EDSL for Threat
Analysis

Lina: An EDSL for Threat
Analysis

 41

Lina: An EDSL for Threat
Analysis

 42

Lina: An EDSL for Threat
Analysis

 43

Lina: An EDSL for Threat
Analysis

 44

Lina: An EDSL for Threat
Analysis

 45

Lina: An EDSL for Threat
Analysis

 46

Lina: An EDSL for Threat
Analysis

• Query Attack Trees for:
• Most Likely Attack
• Least Likely Attack
• Set of all Attacks

• Prove Properties of Attack Trees using Logical
Theory:

• Equivalence of Attack Trees
• Specializations

 47

Lina: An EDSL for Threat
Analysis

 48

Lina: An EDSL for Threat
Analysis

 49

Future Work

 50

Two new new formal model of causal attack trees:
• Petri Net Model

• Categorically shown that this is a model of
linear logic

• Causal Attack Tree Expressions
• Attack trees as “regular” expressions in

Pomset automata based in the concurrent
Kleene algebra

Future Work

 51

• Attack Trees as Comonads?
• Developing a benchmarking library using random

generation of attack trees via QuickCheck.
• Randomized Property based testing of

threat analysis algorithms
• Generate large trees during testing

Takeaways
• Attack Trees can be modeled as formulas in

resource-sensitive logics.
• Analysis of Attack Trees can be automated using

their logical semantics.
• Lina is a functional programming language that

supports this new perspective.

 52

