On the categorical structure of bi-intuitionistic logics
 Harley Eades
 Computer Science

The Big-Big Picture

Inductive Data:

data Tree (A: Type) : Type where
Leaf: A \rightarrow Tree A
Node : Tree A \rightarrow Tree A \rightarrow Tree A

Coinductive Data:

$$
0,0,0,0 \ldots
$$

codata Stream (A : Type) : Type where cons : A \rightarrow Stream A \rightarrow Stream A

The Big-Big Picture

However, in type theory, inductive and coinductive types are not well understood.

- Coq is not type safe [Giménez:1997].
- Agda does not allow mixing them.

The Big-Big Picture

- How can we fix these problems?
- Solution: Duality in computation.

The Big-Litile Picture

First, we must understand duality in intuitionistic logic. Intuitionistic logic with perfect duality is called biintuitionistic logic.

- Problem: Categorical model is not well understood [Crolard:2001].

Birintuitionistic Logic

Classical logic is rich with duality.

Even implication has a dual:

- Subtraction: $A \wedge \neg B=\neg(A \Rightarrow B)$

Birintuitionistic Logic

- Intuitionistic subtraction was first studied by [Rauszer: 1974,1977].

In CS Crolard was the first to introduce the use of subtraction in subbractive logic [Crolard:2001].

- Application: Constructive coroutines [Crolard:2004].

In LL, Lambek introduced subtraction in Bilinear Logic [Lambek:1993,Lambek:1995].

Semi-Bilinear Intuitionistic Logic

(Formulas) $A, B, C \quad::=\quad \perp|\top| 1|0| A \multimap B \mid A \bullet B$ $|A \otimes B| A \oplus B \mid A \times B$ $|A+B|!A \mid ? A$
(Contexts) $\quad \Gamma, \Delta \quad::=\cdot|A| \Gamma, \Gamma^{\prime}$

$$
\begin{array}{cc}
\Gamma \vdash A, \Delta \\
\frac{\Gamma^{\prime}, B \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime}, A \multimap B \vdash \Delta, \Delta^{\prime}} & \mathrm{ImPL} \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B, \Delta} \mathrm{ImPR} \\
\frac{A \vdash B, \Delta}{\Gamma, A \bullet B \vdash \Delta} \text { subL } & \frac{\Gamma^{\prime}+A, \Delta^{\prime}}{\Gamma, \Gamma^{\prime}+A \bullet B, \Delta, \Delta^{\prime}} \quad \text { subR }
\end{array}
$$

Categorical Investigation

The Three Perspectives of Computation

Category Theory

Subiractive Logic

- [In [Crolard:2001] Crolard showed that the categorical model using bi-[CCC]s for subtractive logic is degenerative.
- There is at most one morphism between any two objects.

However, this collapse does not occur for categorical models of linear logic.

Categorical Model

- Monoidal Category:

$$
\left(\mathbb{C}, \otimes, T, \alpha_{A, B, C}, \lambda_{A}, \rho_{A}\right)
$$

$\mathbb{C} \times \mathbb{C} \xrightarrow{\otimes} \mathbb{C}$
$T \otimes A \xrightarrow{\lambda_{A}} A$

$$
A \otimes T \xrightarrow{\rho_{A}} A
$$

Categorical Model

Monoidal Category:

Categorical Model

Monoidal Category:

$$
\begin{gathered}
(A \otimes T) \otimes B \xrightarrow{\alpha_{A, T, B}} A \otimes(T \otimes B) \\
\lambda_{T}=\rho_{T}: T \otimes T \rightarrow T
\end{gathered}
$$

Categorical Model

- Symmetric Monoidal Category:

$$
A \otimes B \xrightarrow{\beta_{A, B}} B \otimes A \quad \quad \beta_{B, A} \circ \beta_{A, B}=i d_{A \otimes B}
$$

$$
(A \otimes B) \otimes C \xrightarrow{\alpha_{A, B, C}} A \otimes(B \otimes C) \xrightarrow{\beta_{A, B \otimes C}}(B \otimes C) \otimes A
$$

$$
\begin{array}{r}
\beta_{A, B} \otimes i d_{C} \mid \\
(B \otimes A) \otimes C \xrightarrow{\alpha_{B, A, C}} B \otimes(A \otimes C) \xrightarrow{i d_{B} \otimes \beta_{A, C}} B \otimes(C \otimes A)
\end{array}
$$

Categorical Model

Symmetric Monoidal Category:

$$
\beta_{T, T}: T \otimes T \rightarrow T \otimes T \quad i d_{T \otimes T}: T \otimes T \rightarrow T \otimes T
$$

Categorical Model

Symmetric Monoidal Category:

$$
\beta_{T, T}: T \otimes T \rightarrow T \otimes T \quad i d_{T \otimes T}: T \otimes T \rightarrow T \otimes T
$$

$$
\beta_{T, T} \neq i d_{T \otimes T}
$$

Categorical Model

Closed Symmetric Monoidal Category:

For any object $B \in \mathbb{C}_{0}$ the functor $-\otimes B: \mathbb{C} \rightarrow \mathbb{C}$ has a right adjoint functor $B \rightarrow-: \mathbb{C} \rightarrow \mathbb{C}$. This means that for all objects $A, B, C \in \mathbb{C}_{0}$, we have the following bijection:

$$
\mathbb{C}[A \otimes B, C] \cong \mathbb{C}[A, B \multimap C]
$$

that is natural in all arguments. This adjunction implies the following UMP:

Categorical Model

Bilinearly distributive category:

$-\operatorname{SMCC}:\left(\mathbb{C}, \otimes, T, \alpha_{A, B, C}, \lambda_{A}, \rho_{A}, \multimap\right)$

$=\operatorname{SMCCC}:\left(\mathbb{C}, \oplus, I, \tilde{\alpha}_{A, B, C}, \tilde{\lambda}_{A}, \tilde{\rho}_{A}, \bullet\right)$
Distributive:
$\operatorname{dist}_{L}^{L} A B C \quad: \quad A \otimes(B \oplus C) \rightarrow(A \otimes B) \oplus C$ $\operatorname{dist}_{R}^{R} A B C \quad: \quad(B \oplus C) \otimes A \rightarrow B \oplus(C \otimes A)$ $\operatorname{dist}_{R}^{L} A B C \quad: \quad A \otimes(B \oplus C) \rightarrow B \oplus(A \otimes C)$ $\operatorname{dist}_{L}^{R} A B C \quad: \quad(B \oplus C) \otimes A \rightarrow(B \otimes A) \oplus C$

Categorical Model

Start with a symmetric monoidal closed category.

- Think of linear implication, and tensor.

However, this model does not handle multiple conclusions.

- Extend the model to be linearly distributive [Cockett, Seely, Trimble, Blute : 1997, 1999].
- Add the coclosure, that is, subtraction.
- Interpret sequents as: $\llbracket \Gamma+\Delta \rrbracket=\phi: \llbracket \Gamma \rrbracket \rightarrow \llbracket \Delta \rrbracket$

Categorical Model

Theorem 1. Assume \mathbb{C} is an arbitrary bilinearly distributive category. If $\Gamma \vdash \Delta$, then there exists a morphism $f \in \mathbb{C}[\llbracket \Gamma \rrbracket$, $\llbracket \Delta \|]$.

A new idea!

- Subtractive logic has a simple definition, but the Dragalin restriction results in a failure of cut elimination.
- Counter Example: $A \rightarrow^{+}\left(A \rightarrow^{-} A \rightarrow^{+}\langle-\rangle\right) \rightarrow^{-}\langle+\rangle$

Brintuitionistic Logic

[[Goré:2000] gives a display calculus that is a bi-intuitionistic logic with cut-elimination.

[Goré et al.:2010] gives a logic using nested sequents which is has cut-elimination.

2-Category?
[[Pinto and Uustalu:2009-2010] give a labeled sequent calculus for bi-intuitionistic logic that has cutelimination.

Bi-intuitionistic Logic

$$
\frac{n^{\prime} \notin|G| \quad\left(G, n \preccurlyeq^{p} n^{\prime}\right) ; \Gamma, p T_{1} @ n^{\prime} \vdash_{n^{\prime}}^{p} T_{2}}{G ; \Gamma \vdash_{n}^{p} T_{1} \rightarrow_{p} T_{2}}
$$

$$
\frac{G \vdash n \preccurlyeq_{\bar{p}}^{*} n^{\prime} \quad G ; \Gamma \vdash_{n^{\prime}}^{\bar{p}} T_{1} \quad G ; \Gamma \vdash_{n^{\prime}}^{p} T_{2}}{G ; \Gamma \vdash_{n}^{p} T_{1} \rightarrow_{\bar{p}} T_{2}}
$$

The Categorical Model

A preordered category is a tuple $(\mathbb{P}, \mathbb{C}, \otimes, \oplus, I, T)$ where \mathbb{P} is the base preorder, and \mathbb{C} has the following data:
_ a collection of objects denoted $A @ w$, where $w \in \operatorname{Obj}(\mathbb{P})$
_ a collection of morphisms denoted $f: M ; A @ w \rightarrow B @ w^{\prime}$
__ for any preorder M, and object $A @ w$, there exists a morphism id ${ }_{A @ w}: M ; A @ w \rightarrow$ $A @ w$ called the identity morphism
_ for any morphisms $f: M_{1} ; A @ w_{1} \rightarrow B @ w_{2}$, and $g: M_{2} ; B @ w_{2} \rightarrow C @ w_{3}$, there exists a morphism $f ; g: M_{1}, M_{2} ; A @ w_{1} \rightarrow C @ w_{3}$,

The Categorical Model

A preordered category is a tuple $(\mathbb{P}, \mathbb{C}, \otimes, \oplus, I, T)$ where \mathbb{P} is the base preorder, and \mathbb{C} has the following data:
\qquad for any morphisms $f: M_{1} ; A @ w_{1} \rightarrow B @ w_{2}$, and $g \in M_{1}\left[w_{1}, w_{3}\right]$, there exists the morphism $f \stackrel{s}{\rightsquigarrow} g: M_{1} ; A @ w_{3} \rightarrow B @ w_{2}$
\qquad for any morphisms $f: M_{1} ; A @ w_{1} \rightarrow B @ w_{2}$, and $g \in M_{1}\left[w_{2}, w_{3}\right]$, there exists the morphism $f \underset{\rightsquigarrow}{t} g: M_{1} ; A @ w_{1} \rightarrow B @ w_{3}$
\qquad for any morphism $f: M_{1} ; A @ w_{1} \rightarrow B @ w_{2}, \operatorname{id}_{A @ w_{1}} ; f=f$, and $f ; \operatorname{id}_{B @ w_{2}}=f$
\qquad for any morphisms $f: M_{1} ; A @ w_{1} \rightarrow B @ w_{2}$, and $g: M_{2} ; B @ w_{2} \rightarrow C @ w_{3}$, $h: M_{3} ; C @ w_{3} \rightarrow D @ w_{4}, f ;(g ; h)=(f ; g) ; h$
_all finite products, denoted by \otimes, and coproducts, denoted \oplus

Condusion

Key Points:

- duality can be exploited to solve interesting problems,
- category theory is a powerful tool,
- SBILL is a new ILL with perfect duality with
- a categorical model.

