Hereditary Substitution for the $\lambda \Delta$-Calculus

Harley Eades and Aaron Stump
Computer Science

CL\&C 2012

Overview

- The $\lambda \Delta$-Calculus
- Hereditary Substitution
- The problem with defining the hereditary substitution function for the $\lambda \Delta$-calculus
- How we solve this problem
- Properties of the Hereditary Substitution Function
- Concluding Normalization

The $\lambda \Delta$-Calculus

- A type theory correspoding to classical natural deduction.
- Originally defined by J. Rehof and M. Sørensen in 1994.
- Provably equalivalent to M . Parigot's $\lambda \mu$-Calculus.
- The bases of classical pure type systems (G. Barthe, J. Hatcliff, M. Sørensen 1997).

The $\lambda \Delta$-Calculus

- Syntax:

$$
\begin{aligned}
T, A, B, C & ::=\perp|b| A \rightarrow B \\
t & ::=x|\lambda x: T . t| \Delta x: T . t \mid t_{1} t_{2} \\
n, m & ::=\lambda x: T . n|\Delta x: T . n| h \\
h & ::=x \mid h n
\end{aligned}
$$

We denote the set of all terms \mathcal{T} and the set of all types ψ.

- Reduction:

$$
\begin{gathered}
\overline{(\lambda x: T \cdot t) t^{\prime} \rightsquigarrow\left[t^{\prime} / x\right] t} \text { BETA } \\
y \text { fresh in } t \text { and } t^{\prime} \\
z \text { fresh in } t \text { and } t^{\prime} \\
\overline{\left(\Delta x: \neg\left(T_{1} \rightarrow T_{2}\right) \cdot t\right) t^{\prime} \rightsquigarrow \Delta y: \neg T_{2} \cdot\left[\lambda z: T_{1} \rightarrow T_{2} \cdot\left(y\left(z t^{\prime}\right)\right) / x\right] t} \quad \text { STRUCTRED }
\end{gathered}
$$

The $\lambda \Delta$-Calculus

- Typing Rules:

$$
\begin{array}{lll}
& \begin{array}{l}
\Gamma, x: A \vdash t: B \\
\Gamma, x: A \vdash x: A
\end{array} & \text { LAM } \\
\Gamma \vdash \lambda x: A \cdot t: A \rightarrow B & \\
\frac{\Gamma \vdash t_{2}: A}{\Gamma \vdash t_{1}: A \rightarrow B} \\
& & \\
\Gamma \vdash t_{1} t_{2}: B & \text { APP } & \frac{\Gamma, x: \neg A \vdash t: \perp}{\Gamma \vdash \Delta x: \neg A \cdot t: A} \quad \text { DELTA }
\end{array}
$$

Hereditary Substitution

- Syntax: $[t / x]^{A} t^{\prime}=t^{\prime \prime}$.
- Usual termination order: $\left(A, t^{\prime}\right)$.
- Like ordinary capture avoiding substitution.
- Except, if the substitution introduces a redex, then that redex is recursively reduced.
- Example: $[\lambda z: \mathrm{b} . z / x]^{\mathrm{b} \rightarrow \mathrm{b}}(x y)\left(\approx\left((\lambda z: \mathrm{b} . z) y \approx[y / z]^{\mathrm{b}} z\right)=y\right.$.
- The constructive content of normalization proofs dating all the way back to Prawitz (1965).
- First made explicit by K. Watkins for simple types and R. Adams for dependent types.

An Intuition of the Problems Involved

- Recall how hereditary substitution works for β-reduction:
$[\lambda z: \mathrm{b} . z / x]^{\mathrm{b} \rightarrow \mathrm{b}}(x y)\left(\approx\left((\lambda z: \mathrm{b} . z) y \approx[y / z]^{\mathrm{b}} z\right)=y\right.$

An Intuition of the Problems Involved

- Recall how hereditary substitution works for β-reduction:
$[\lambda z: \mathrm{b} . z / x]^{\mathrm{b} \rightarrow \mathrm{b}}(x y)\left(\approx\left((\lambda z: \mathrm{b} . z) y \approx[y / z]^{\mathrm{b}} z\right)=y\right.$
- The naive solution for structural reduction:

$$
\left[\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot(x q) / z\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(z r)=\Delta y: \neg A^{\prime} \cdot\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} \cdot(y(u r))\right) / x\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(x q)
$$

An Intuition of the Problems Involved

- Recall how hereditary substitution works for β-reduction:
$[\lambda z: \mathrm{b} . z / x]^{\mathrm{b} \rightarrow \mathrm{b}}(x y)\left(\approx\left((\lambda z: \mathrm{b} . z) y \approx[y / z]^{\mathrm{b}} z\right)=y\right.$
- The naive solution for structural reduction: $\left[\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot(x q) / z\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(z r)=\Delta y: \neg A^{\prime} \cdot\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .(y(u r))\right) / x\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(x q)$
- The cut type actually increased!
- The problem: The usual termination order $\left(A, t^{\prime}\right)$ no longer works.
- How do we fix this?

A Look at Structural Reduction

Consider: $\left(\left(\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) . t\right) t^{\prime}\right) \rightsquigarrow \Delta y: \neg A^{\prime} .\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(y\left(u t^{\prime}\right)\right)\right) / x\right] t$

A Look at Structural Reduction

Consider: $\left(\left(\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) . t\right) t^{\prime}\right) \rightsquigarrow \Delta y: \neg A^{\prime} .\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(y\left(u t^{\prime}\right)\right)\right) / x\right] t$

A Look at Structural Reduction

Consider: $\left(\left(\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) . t\right) t^{\prime}\right) \rightsquigarrow \Delta y: \neg A^{\prime} .\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(y\left(u t^{\prime}\right)\right)\right) / x\right] t$

When redexes are created:

A Look at Structural Reduction

Consider: $\left(\left(\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) . t\right) t^{\prime}\right) \rightsquigarrow \Delta y: \neg A^{\prime} .\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(y\left(u t^{\prime}\right)\right)\right) / x\right] t$

When redexes are created:

Is Further Reduction the Answer?

- Consider the previous example:

$$
\left.\left[\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot(x q) / z\right]\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(z r)=\Delta y: \neg A^{\prime} \cdot\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} \cdot(y(u r))\right) / x\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(x q)
$$

- Recursively reducing the redexes introduced by substituting the linear λ-abstraction:

$$
\left[\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot(x q) / z\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(z r)=\Delta y: \neg A^{\prime} .\left(y[q / u]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(u r)\right)
$$

Is Further Reduction the Answer?

- Consider the previous example:

$$
\left.\left[\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot(x q) / z\right]\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(z r)=\Delta y: \neg A^{\prime} \cdot\left[\left(\lambda u: A^{\prime \prime} \rightarrow A^{\prime} \cdot(y(u r))\right) / x\right]^{-\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(x q)
$$

- Recursively reducing the redexes introduced by substituting the linear λ-abstraction:
$\left[\Delta x: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot(x q) / z\right]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(z r)=\Delta y: \neg A^{\prime} .\left(y[q / u]^{\left(A^{\prime \prime} \rightarrow A^{\prime}\right)}(u r)\right)$
- The cut type stayed the same.
- But the term we are substituting has decreased.
- Is this always the case? Basically, it is!

The Final Solution

- The term we are substituting either decrease structurally or decreases contextually.
- Structural decrease: $\forall t, t^{\prime} . t<t^{\prime}$ if t^{\prime} is a strict subexpression of t.
- Contextual decrease: A term is considered larger than itself with a hole.
- $\forall \mathcal{C}, t . C<t$ if $\exists s . \mathcal{C}[s] \equiv t$.
- Using this insight the hereditary substitution function is defineable using the ordering $\left(A, t, t^{\prime}\right)$.

Hereditary Substitution

$[t / x]^{A} \square=\square$
$[t / x]^{A} x=t$
$[t / x]^{A} y=y$

Type: $\mathcal{T} \cup \mathcal{E} \rightarrow \mathcal{T} \rightarrow \Psi \rightarrow \mathcal{T} \cup \mathcal{E} \rightarrow \mathcal{T} \cup \mathcal{E}$

 Total using the ordering: $\left(A, t, t^{\prime}\right)$Where y is a variable distinct from x.
$[t / x]^{A}\left(\lambda y: A^{\prime} . t^{\prime}\right)=\lambda y: A^{\prime} .\left([t / x]^{A} t^{\prime}\right)$
Where $\mathrm{FV}(t) \cap \mathrm{FV}\left(t^{\prime}\right)=\emptyset$.
$[t / x]^{A}\left(\Delta y: A^{\prime} . t^{\prime}\right)=\Delta y: A^{\prime} .\left([t / x]^{A} t^{\prime}\right)$
Where $\mathrm{FV}(t) \cap \mathrm{FV}\left(t^{\prime}\right)=\emptyset$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\left([t / x]^{A} t_{1}\right)\left([t / x]^{A} t_{2}\right)$
Where $\left([t / x]^{A} t_{1}\right)$ is not a λ-abstraction or Δ-abstraction, or both $\left([t / x]^{A} t_{1}\right)$ and t_{1} are λ-abstractions or Δ-abstractions, or ctype $A_{A}\left(x, t_{1}\right)$ is undefined.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\left[s_{2}^{\prime} / y\right]^{A^{\prime \prime}} s_{1}^{\prime}$
Where $\left([t / x]^{A} t_{1}\right)=\lambda y: A^{\prime \prime} . s_{1}^{\prime}$ for some y, s_{1}^{\prime} and $A^{\prime \prime}$, $[t / x]^{A} t_{2}=s_{2}^{\prime}$, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left(\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right] s_{1}\right)$ Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot s_{1}$ for some $y, s_{1}, A^{\prime \prime}$, and there does not exists any context of s_{1} equal to $\mathcal{C}\left[y s_{1}^{\prime}\right]$ for some term $s_{1}^{\prime},\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and u are fresh variables of type A^{\prime} and $A^{\prime \prime} \rightarrow A^{\prime}$ respectively, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right]\left(\right.$ fill $\left.\mathcal{C}\left[\vec{\square}_{i}\right] \overrightarrow{\mathcal{C}\left[z\left(\left[s_{1} / q\right]^{A^{\prime \prime} \rightarrow A^{\prime}}\left(q s_{2}\right)\right)\right]}\right)$ Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot \mathcal{C}\left[\overline{\left(y s_{1}\right)^{\prime}}\right]$ for some i, y, s_{1} and $A^{\prime \prime}$, $\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and r are fresh variables of type A^{\prime} and $A^{\prime \prime}$ respectively, and $\operatorname{ctype}_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.

Hereditary Substitution

$[t / x]^{A} \square=\square$
$[t / x]^{A} x=t$
$[t / x]^{A} y=y$

Type: $\mathcal{T} \cup \mathcal{E} \rightarrow \mathcal{T} \rightarrow \Psi \rightarrow \mathcal{T} \cup \mathcal{E} \rightarrow \mathcal{T} \cup \mathcal{E}$

 Total using the ordering: $\left(A, t, t^{\prime}\right)$Where y is a variable distinct from x.
$[t / x]^{A}\left(\lambda y: A^{\prime} . t^{\prime}\right)=\lambda y: A^{\prime} .\left([t / x]^{A} t^{\prime}\right)$ Where $\mathrm{FV}(t) \cap \mathrm{FV}\left(t^{\prime}\right)=\emptyset$.
$[t / x]^{A}\left(\Delta y: A^{\prime} . t^{\prime}\right)=\Delta y: A^{\prime} .\left([t / x]^{A} t^{\prime}\right)$
Where $\mathrm{FV}(t) \cap \mathrm{FV}\left(t^{\prime}\right)=\emptyset$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\left([t / x]^{A} t_{1}\right)\left([t / x]^{A} t_{2}\right)$
Where $\left([t / x]^{A} t_{1}\right)$ is not a λ-abstraction or Δ-abstraction, or both $\left([t / x]^{A} t_{1}\right)$ and t_{1} are λ-abstractions or Δ-abstractions, or ctype $A_{A}\left(x, t_{1}\right)$ is undefined.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\left[s_{2}^{\prime} / y\right]^{A^{\prime \prime}} s_{1}^{\prime}$
Where $\left([t / x]^{A} t_{1}\right)=\lambda y: A^{\prime \prime} . s_{1}^{\prime}$ for some y, s_{1}^{\prime} and $A^{\prime \prime}$, $[t / x]^{A} t_{2}=s_{2}^{\prime}, \operatorname{and~ctype}_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left(\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right] s_{1}\right)$ Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot s_{1}$ for some $y, s_{1}, A^{\prime \prime}$, and there does not exists any context of s_{1} equal to $\mathcal{C}\left[y s_{1}^{\prime}\right]$ for some term $s_{1}^{\prime},\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and u are fresh variables of type A^{\prime} and $A^{\prime \prime} \rightarrow A^{\prime}$ respectively, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right]\left(\right.$ fill $\left.\mathcal{C}\left[\vec{\square}_{i}\right] \overrightarrow{\mathcal{C}\left[z\left(\left[s_{1} / q\right]^{A^{\prime \prime} \rightarrow A^{\prime}}\left(q s_{2}\right)\right)\right]}\right)$ Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot \mathcal{C}\left[\overline{\left(y s_{1}\right)^{\prime}}\right]$ for some i, y, s_{1} and $A^{\prime \prime}$, $\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and r are fresh variables of type A^{\prime} and $A^{\prime \prime}$ respectively, and $\operatorname{ctype}_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.

Hereditary Substitution

$$
\begin{aligned}
& {[t / x]^{A} \square=\square} \\
& {[t / x]^{A} x=t} \\
& {[t / x]^{A} y=y}
\end{aligned}
$$

Type: $\mathcal{T} \cup \mathcal{E} \rightarrow \mathcal{T} \rightarrow \Psi \rightarrow \mathcal{T} \cup \mathcal{E} \rightarrow \mathcal{T} \cup \mathcal{E}$ Total using the ordering: $\left(A, t, t^{\prime}\right)$

Where y is a variable distinct from x.
$[t / x]^{A}\left(\lambda y: A^{\prime} . t^{\prime}\right)=\lambda y: A^{\prime} .\left([t / x]^{A} t^{\prime}\right)$
Where $\mathrm{FV}(t) \cap \mathrm{FV}\left(t^{\prime}\right)=\emptyset$.
$[t / x]^{A}\left(\Delta y: A^{\prime} . t^{\prime}\right)=\Delta y: A^{\prime} .\left([t / x]^{A} t^{\prime}\right)$
Where $\mathrm{FV}(t) \cap \mathrm{FV}\left(t^{\prime}\right)=\emptyset$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\left([t / x]^{A} t_{1}\right)\left([t / x]^{A} t_{2}\right)$
Where $\left([t / x]^{A} t_{1}\right)$ is not a λ-abstraction or Δ-abstraction, or both $\left([t / x]^{A} t_{1}\right)$ and t_{1} are λ-abstractions or Δ-abstractions, or ctype $A_{A}\left(x, t_{1}\right)$ is undefined.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\left[s_{2}^{\prime} / y\right]^{A^{\prime \prime}} s_{1}^{\prime}$
Where $\left([t / x]^{A} t_{1}\right)=\lambda y: A^{\prime \prime} . s_{1}^{\prime}$ for some y, s_{1}^{\prime} and $A^{\prime \prime}$, $[t / x]^{A} t_{2}=s_{2}^{\prime}, \operatorname{and~ctype}_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left(\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right] s_{1}\right)$ Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot s_{1}$ for some $y, s_{1}, A^{\prime \prime}$, and there does not exists any context of s_{1} equal to $\mathcal{C}\left[y s_{1}^{\prime}\right]$ for some term $s_{1}^{\prime},\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and u are fresh variables of type A^{\prime} and $A^{\prime \prime} \rightarrow A^{\prime}$ respectively, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right]\left(\right.$ fill $\mathcal{C}\left[\overrightarrow{\square_{i}}\right] \overrightarrow{\left.\mathcal{C}\left[z\left(\left[s_{1} / q\right]^{A^{\prime \prime} \rightarrow A^{\prime}}\left(q s_{2}\right)\right)\right]\right)}$
Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot \mathcal{C}\left[\overline{\left(y s_{1}\right)^{\prime}}\right]$ for some i, y, s_{1} and $A^{\prime \prime}$, $\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and r are fresh variables of type A^{\prime} and $A^{\prime \prime}$ respectively, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.

Hereditary Substitution: Handling Structural Reduction

- Case when no further redexes are created:
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left(\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(y\left(u s_{2}\right)\right) / y\right] s_{1}\right)$
Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) . s_{1}$ for some $y, s_{1}, A^{\prime \prime}$, and there does not exists any context of s_{1} equal to $\mathcal{C}\left[y s_{1}^{\prime}\right]$ for some term $s_{1}^{\prime},\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and u are fresh variables of type A^{\prime} and $A^{\prime \prime} \rightarrow A^{\prime}$ respectively, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.

Hereditary Substitution: Handling Structural Reduction

- Case when no further redexes are created:
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left(\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(y\left(u s_{2}\right)\right) / y\right] s_{1}\right)$
Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot s_{1}$ for some $y, s_{1}, A^{\prime \prime}$, and there does not exists any context of s_{1} equal to $\mathcal{C}\left[y s_{1}^{\prime}\right]$ for some term $s_{1}^{\prime},\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and u are fresh variables of type A^{\prime} and $A^{\prime \prime} \rightarrow A^{\prime}$ respectively, and ctype $A_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
- Case when structural reduction will introduce more redexes:
$[t / x]^{A}\left(t_{1} t_{2}\right)=\Delta z: \neg A^{\prime} .\left[\lambda u: A^{\prime \prime} \rightarrow A^{\prime} .\left(z\left(u s_{2}\right)\right) / y\right]\left(\right.$ fill $\mathcal{C}\left[\overrightarrow{\square_{i}}\right] \overrightarrow{\left.\mathcal{C}\left[z\left(\left[s_{1} / q\right]^{A^{\prime \prime} \rightarrow A^{\prime}}\left(q s_{2}\right)\right)\right]\right)}$ Where $\left([t / x]^{A} t_{1}\right)=\Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot \mathcal{C}\left[\overline{\left(y s_{1}\right)^{\prime}}\right]$ for some i, y, s_{1} and $A^{\prime \prime}$, $\left([t / x]^{A} t_{2}\right)=s_{2}$ for some s_{2}, z and r are fresh variables of type A^{\prime} and $A^{\prime \prime}$ respectively, and $\operatorname{ctype}_{A}\left(x, t_{1}\right)=A^{\prime \prime} \rightarrow A^{\prime}$.
- Do not substitute the linear lambda-abstractions, but reduce them right away.
- $\overrightarrow{\mathcal{C}[t]}$: Expands the context into a list of lists of subcontexts.
- If $A \equiv A^{\prime \prime} \rightarrow A^{\prime}$ then we know $t_{1} \equiv x$ and $t \equiv \Delta y: \neg\left(A^{\prime \prime} \rightarrow A^{\prime}\right) \cdot \mathcal{C}\left[\overrightarrow{\left(y s_{1}\right)_{i}}\right]$.
- Hence $s_{1}<t$.

Properties of Hereditary Substitution

Lemma (No Holes)

 If $\Gamma \vdash t: A, \Gamma, x: A, \Gamma^{\prime} \vdash t^{\prime}: B$ and $[t / x]^{A} t^{\prime}$ is defined then $[t / x]^{A} t^{\prime}$ has no holes.
Lemma (Totality and Type Preservation)

If $\Gamma \vdash t: A$ and $\Gamma, x: A, \Gamma^{\prime} \vdash t^{\prime}: B$, then there exists a term s such that $[t / x]^{A} t^{\prime}=s$ and $\Gamma, \Gamma^{\prime} \vdash s: B$.

Lemma (Normality Preservation)

 If $\Gamma \vdash n: A$ and $\Gamma, x: A, \Gamma^{\prime} \vdash n^{\prime}: A^{\prime}$ then $[n / x]^{A} n^{\prime}$ is normal.
Lemma (Soundness with Respect to Reduction)

```
If }\Gamma\vdasht:A\mathrm{ and }\Gamma,x:A,\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{t}{}{\prime}:B\mathrm{ then }[t/x]\mp@subsup{t}{}{\prime}\rightsquigarrow* [t/x\mp@subsup{]}{}{A}\mp@subsup{t}{}{\prime}
```


Concluding Normalization

Definition

The interpretation of types $\llbracket T \rrbracket\ulcorner$ is defined by:

$$
n \in \llbracket T \rrbracket_{\Gamma} \Longleftrightarrow \Gamma \vdash n: T
$$

We extend this definition to non-normal terms t in the following way:

$$
t \in \llbracket T \rrbracket_{\ulcorner } \Longleftrightarrow \exists n . t \rightsquigarrow!n \in \llbracket T \rrbracket_{\ulcorner }
$$

> Lemma (Hereditary Substitution for the Interpretation of Types) If $n \in \llbracket T \rrbracket_{r}$ and $n^{\prime} \in \llbracket T^{\prime} \rrbracket_{\Gamma, x::, \tau, r^{\prime}}$, then $[n / x]^{\top} n^{\prime} \in \llbracket T^{\prime} \rrbracket_{\Gamma, r^{\prime}}$.

Theorem (Type Soundness)

If $\Gamma \vdash t: T$ then $t \in \llbracket T \rrbracket\ulcorner$.

Conclusion

- We defined hereditary substitution function using the ordering $\left(A, t, t^{\prime}\right)$.
- It can be used to show normalization of the $\lambda \Delta$-calculus.
- Currently formalizing all of this in the Coq proof assistant.
- Future work:
- Formulate the canonical predicative classical logical framework.
- Giving a categorical semantics of hereditary substitution.
- Potentially usable to define the hereditary substitution function for Girard-Reynolds system F.
- Formulate the hereditary substitution function for Gödel's system T.

Thank you!

Multi-Holed Contexts

Recall the usual definition of single-hole contexts:

$$
\mathcal{C}::=\square|\lambda x: T . \mathcal{C}| \Delta x: T . \mathcal{C}|t \mathcal{C}| \mathcal{C} t
$$

We extend this definition to multi-holed context as follows:

$$
\mathcal{C}::=\square_{i}|\lambda x: T \mathcal{C}| \Delta x: T \mathcal{C}|t \mathcal{C}| \mathcal{C} t
$$

where $i \in \mathbb{N}$.

Definition (Well-Formed Multi-Holed Context)

A context \mathcal{C} is well formed if \mathcal{C} does not have more than one hole with the same i.
We denote the set of all well-formed contexts as \mathcal{E}.

Definition (Context Hole Filling)

If \mathcal{C} is a well-formed context with i holes then $\mathcal{C}\left[\vec{t}_{i}\right]=\mathcal{C}\left[t_{1}, \ldots, t_{i}\right]$, where t_{i} fills \square_{i}.

Hereditary Substitution

Definition (Well-founded ordering on types)

We define an ordering on types T as the compatible closure of the following formulas.

$$
\begin{aligned}
& T_{1} \rightarrow T_{2}>T_{1} \\
& T_{1} \rightarrow T_{2}>T_{2}
\end{aligned}
$$

Absurdity and base types are minimal elements.
We denote the reflexive-transitive closure of $>$ as \geq.

Hereditary Substitution

Definition

We define the partial function ctype : $\Psi \rightarrow \mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathcal{T}$ which computes the type of an application in head normal form. It is defined as follows:
$\operatorname{ctype}_{T}(x, x)=T$
$\operatorname{ctype}_{T}\left(x, t_{1} t_{2}\right)=T^{\prime \prime}$
Where $\operatorname{ctype}_{T}\left(x, t_{1}\right)=T^{\prime} \rightarrow T^{\prime \prime}$.

Lemma (Properties of ctype)

i. If $\operatorname{ctype}_{T}(x, t)=T^{\prime}$ then head $(t)=x$ and $T^{\prime} \leq T$.
ii. If $\Gamma, x: T, \Gamma^{\prime} \vdash t: T^{\prime}$ and $\operatorname{ctype}_{T}(x, t)=T^{\prime \prime}$ then $T^{\prime} \equiv T^{\prime \prime}$.

Full ctype Properties

Lemma (Properties of ctype)

i. If $\operatorname{ctype} e_{T}(x, t)=T^{\prime}$ then head $(t)=x$ and T^{\prime} is a subexpression of T.
ii. If $\Gamma, x: T, \Gamma^{\prime} \vdash t: T^{\prime}$ and $\operatorname{ctype}_{T}(x, t)=T^{\prime \prime}$ then $T^{\prime} \equiv T^{\prime \prime}$.
iii. If $\Gamma, x: T, \Gamma^{\prime} \vdash t_{1} t_{2}: T^{\prime}$, $\Gamma \vdash t: T,[t / x]^{\top} t_{1}=\lambda y: T_{1} . t^{\prime}$, and t_{1} is not a λ-abstraction, then there exists a type A such that $\operatorname{ctype}{ }_{T}\left(x, t_{1}\right)=A$. iv. If $\Gamma, x: T, \Gamma^{\prime} \vdash t_{1} t_{2}: T^{\prime}$, $\Gamma \vdash t: T,[t / x]^{\top} t_{1}=\Delta y: \neg\left(T^{\prime \prime} \rightarrow T^{\prime}\right) . t^{\prime}$, and t_{1} is not a μ-abstraction, then there exists a type A such that $\operatorname{ctype}_{T}\left(x, t_{1}\right)=A$.

