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Overview

I The λ∆-Calculus

I Hereditary Substitution

I The problem with defining the hereditary substitution function for the
λ∆-calculus

I How we solve this problem

I Properties of the Hereditary Substitution Function

I Concluding Normalization
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The λ∆-Calculus

I A type theory correspoding to classical natural deduction.

I Originally defined by J. Rehof and M. Sørensen in 1994.

I Provably equalivalent to M. Parigot’s λµ-Calculus.

I The bases of classical pure type systems (G. Barthe, J. Hatcliff, M.
Sørensen 1997).
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The λ∆-Calculus

I Syntax:
T ,A,B,C ::= ⊥ | b |A→ B

t ::= x |λx : T .t |∆x : T .t | t1 t2
n,m ::= λx : T .n |∆x : T .n |h

h ::= x |h n
We denote the set of all terms T and the set of all types Ψ.

I Reduction:

(λx : T .t) t ′  [t ′/x ]t
BETA

y fresh in t and t ′

z fresh in t and t ′

(∆x : ¬(T1 → T2).t) t ′  ∆y : ¬T2.[λz : T1 → T2.(y (z t ′))/x ]t
STRUCTRED
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The λ∆-Calculus

I Typing Rules:

Γ, x : A ` x : A
AX

Γ, x : A ` t : B
Γ ` λx : A.t : A→ B

LAM

Γ ` t2 : A
Γ ` t1 : A→ B

Γ ` t1 t2 : B
APP

Γ, x : ¬A ` t :⊥
Γ ` ∆x : ¬A.t : A

DELTA
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Hereditary Substitution

I Syntax: [t/x ]At ′ = t ′′.
I Usual termination order: (A, t ′).

I Like ordinary capture avoiding substitution.
I Except, if the substitution introduces a redex, then that redex is

recursively reduced.
I Example: [λz : b.z/x ]b→b(x y)(≈ ((λz : b.z) y ≈ [y/z]bz) = y .

I The constructive content of normalization proofs dating all the way back
to Prawitz (1965).

I First made explicit by K. Watkins for simple types and R. Adams for
dependent types.
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An Intuition of the Problems Involved

I Recall how hereditary substitution works for β-reduction:
[λz : b.z/x ]b→b(x y)(≈ ((λz : b.z) y ≈ [y/z]bz) = y

I The naive solution for structural reduction:
[∆x : ¬(A′′ → A′).(x q)/z](A′′→A′)(z r) = ∆y : ¬A′.[(λu : A′′ → A′.(y (u r)))/x ]¬(A′′→A′)(x q)

I The cut type actually increased!

I The problem: The usual termination order (A, t ′) no longer works.
I How do we fix this?
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A Look at Structural Reduction

Consider: ((∆x : ¬(A′′ → A′).t) t ′) ∆y : ¬A′.[(λu : A′′ → A′.(y (u t ′)))/x ]t

When redexes are created:

∆x : ¬(A′′ → A′).t

x t ′′1 x t ′′i x t ′′k· · · · · ·

x a1 x aj x ar· · · · · ·
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Is Further Reduction the Answer?

I Consider the previous example:
[∆x : ¬(A′′ → A′).(x q)/z](A′′→A′)(z r) = ∆y : ¬A′.[(λu : A′′ → A′.(y (u r)))/x ]¬(A′′→A′)(x q)

I Recursively reducing the redexes introduced by substituting the linear
λ-abstraction:
[∆x : ¬(A′′ → A′).(x q)/z](A′′→A′)(z r) = ∆y : ¬A′.(y [q/u](A′′→A′)(u r))

I The cut type stayed the same.
I But the term we are substituting has decreased.
I Is this always the case? Basically, it is!
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The Final Solution

I The term we are substituting either decrease structurally or decreases
contextually.

I Structural decrease: ∀t , t ′.t < t ′ if t ′ is a strict subexpression of t .
I Contextual decrease: A term is considered larger than itself with a hole.

I ∀C, t .C < t if ∃s.C[s] ≡ t .

I Using this insight the hereditary substitution function is defineable using
the ordering (A, t , t ′).
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Hereditary Substitution
[t/x ]A� = �

[t/x ]Ax = t

[t/x ]Ay = y
Where y is a variable distinct from x .

[t/x ]A(λy : A′.t′) = λy : A′.([t/x ]At′)
Where FV (t) ∩ FV (t′) = ∅.

[t/x ]A(∆y : A′.t′) = ∆y : A′.([t/x ]At′)
Where FV (t) ∩ FV (t′) = ∅.

[t/x ]A(t1 t2) = ([t/x ]At1) ([t/x ]At2)

Where ([t/x ]At1) is not a λ-abstraction or ∆-abstraction, or both ([t/x ]At1) and t1 are
λ-abstractions or ∆-abstractions, or ctypeA(x, t1) is undefined.

[t/x ]A(t1 t2) = [s′
2/y ]A

′′
s′

1

Where ([t/x ]At1) = λy : A′′.s′
1 for some y , s′

1 and A′′,
[t/x ]At2 = s′

2, and ctypeA(x, t1) = A′′ → A′.

[t/x ]A(t1 t2) = ∆z : ¬A′.([λu : A′′ → A′.(z (u s2))/y ]s1)

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).s1 for some y , s1, A′′, and there does not exists any
context of s1 equal to C[y s′

1] for some term s′
1, ([t/x ]At2) = s2 for some s2, z and u are

fresh variables of type A′ and A′′ → A′ respectively, and ctypeA(x, t1) = A′′ → A′.

[t/x ]A(t1 t2) = ∆z : ¬A′.[λu : A′′ → A′.(z (u s2))/y ](fill C[
−→
�i ]
−−−−−−−−−−−−−−−−−→
C[z ([s1/q]A

′′→A′ (q s2))])

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).C[
−−−→
(y s1)i ] for some i , y , s1 and A′′,

([t/x ]At2) = s2 for some s2, z and r are fresh variables of type A′ and A′′ respectively,
and ctypeA(x, t1) = A′′ → A′.

Harley Eades (CL&C 2012) Hereditary Substitution for the λ∆-Calculus 11 / 15

Type: T ∪ E → T → Ψ→ T ∪ E → T ∪ E
Total using the ordering: (A, t , t ′)



Hereditary Substitution
[t/x ]A� = �

[t/x ]Ax = t

[t/x ]Ay = y
Where y is a variable distinct from x .

[t/x ]A(λy : A′.t′) = λy : A′.([t/x ]At′)
Where FV (t) ∩ FV (t′) = ∅.

[t/x ]A(∆y : A′.t′) = ∆y : A′.([t/x ]At′)
Where FV (t) ∩ FV (t′) = ∅.

[t/x ]A(t1 t2) = ([t/x ]At1) ([t/x ]At2)

Where ([t/x ]At1) is not a λ-abstraction or ∆-abstraction, or both ([t/x ]At1) and t1 are
λ-abstractions or ∆-abstractions, or ctypeA(x, t1) is undefined.

[t/x ]A(t1 t2) = [s′
2/y ]A

′′
s′

1

Where ([t/x ]At1) = λy : A′′.s′
1 for some y , s′

1 and A′′,
[t/x ]At2 = s′

2, and ctypeA(x, t1) = A′′ → A′.

[t/x ]A(t1 t2) = ∆z : ¬A′.([λu : A′′ → A′.(z (u s2))/y ]s1)

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).s1 for some y , s1, A′′, and there does not exists any
context of s1 equal to C[y s′

1] for some term s′
1, ([t/x ]At2) = s2 for some s2, z and u are

fresh variables of type A′ and A′′ → A′ respectively, and ctypeA(x, t1) = A′′ → A′.

[t/x ]A(t1 t2) = ∆z : ¬A′.[λu : A′′ → A′.(z (u s2))/y ](fill C[
−→
�i ]
−−−−−−−−−−−−−−−−−→
C[z ([s1/q]A

′′→A′ (q s2))])

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).C[
−−−→
(y s1)i ] for some i , y , s1 and A′′,

([t/x ]At2) = s2 for some s2, z and r are fresh variables of type A′ and A′′ respectively,
and ctypeA(x, t1) = A′′ → A′.

Harley Eades (CL&C 2012) Hereditary Substitution for the λ∆-Calculus 11 / 15

Type: T ∪ E → T → Ψ→ T ∪ E → T ∪ E
Total using the ordering: (A, t , t ′)



Hereditary Substitution
[t/x ]A� = �

[t/x ]Ax = t

[t/x ]Ay = y
Where y is a variable distinct from x .

[t/x ]A(λy : A′.t′) = λy : A′.([t/x ]At′)
Where FV (t) ∩ FV (t′) = ∅.

[t/x ]A(∆y : A′.t′) = ∆y : A′.([t/x ]At′)
Where FV (t) ∩ FV (t′) = ∅.

[t/x ]A(t1 t2) = ([t/x ]At1) ([t/x ]At2)

Where ([t/x ]At1) is not a λ-abstraction or ∆-abstraction, or both ([t/x ]At1) and t1 are
λ-abstractions or ∆-abstractions, or ctypeA(x, t1) is undefined.

[t/x ]A(t1 t2) = [s′
2/y ]A

′′
s′

1

Where ([t/x ]At1) = λy : A′′.s′
1 for some y , s′

1 and A′′,
[t/x ]At2 = s′

2, and ctypeA(x, t1) = A′′ → A′.

[t/x ]A(t1 t2) = ∆z : ¬A′.([λu : A′′ → A′.(z (u s2))/y ]s1)

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).s1 for some y , s1, A′′, and there does not exists any
context of s1 equal to C[y s′

1] for some term s′
1, ([t/x ]At2) = s2 for some s2, z and u are

fresh variables of type A′ and A′′ → A′ respectively, and ctypeA(x, t1) = A′′ → A′.

[t/x ]A(t1 t2) = ∆z : ¬A′.[λu : A′′ → A′.(z (u s2))/y ](fill C[
−→
�i ]
−−−−−−−−−−−−−−−−−→
C[z ([s1/q]A

′′→A′ (q s2))])

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).C[
−−−→
(y s1)i ] for some i , y , s1 and A′′,

([t/x ]At2) = s2 for some s2, z and r are fresh variables of type A′ and A′′ respectively,
and ctypeA(x, t1) = A′′ → A′.

Harley Eades (CL&C 2012) Hereditary Substitution for the λ∆-Calculus 11 / 15

Type: T ∪ E → T → Ψ→ T ∪ E → T ∪ E
Total using the ordering: (A, t , t ′)



Hereditary Substitution: Handling Structural Reduction

I Case when no further redexes are created:

[t/x ]A(t1 t2) = ∆z : ¬A′.([λu : A′′ → A′.(y (u s2))/y ]s1)

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).s1 for some y , s1, A′′, and there does not exists any
context of s1 equal to C[y s′

1] for some term s′
1 , ([t/x ]At2) = s2 for some s2, z and u are

fresh variables of type A′ and A′′ → A′ respectively, and ctypeA(x, t1) = A′′ → A′.

I Case when structural reduction will introduce more redexes:

[t/x ]A(t1 t2) = ∆z : ¬A′.[λu : A′′ → A′.(z (u s2))/y ](fill C[
−→
�i ]
−−−−−−−−−−−−−−−−−→
C[z ([s1/q]A

′′→A′ (q s2))])

Where ([t/x ]At1) = ∆y : ¬(A′′ → A′).C[
−−−→
(y s1)i ] for some i , y , s1 and A′′,

([t/x ]At2) = s2 for some s2, z and r are fresh variables of type A′ and A′′ respectively,
and ctypeA(x, t1) = A′′ → A′.

I Do not substitute the linear lambda-abstractions, but reduce them right away.
I
−→
C[t ] : Expands the context into a list of lists of subcontexts.

I If A ≡ A′′ → A′ then we know t1 ≡ x and t ≡ ∆y : ¬(A′′ → A′).C[
−−−→
(y s1)i ].

I Hence s1 < t .
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Properties of Hereditary Substitution

Lemma (No Holes)

If Γ ` t : A, Γ, x : A, Γ′ ` t ′ : B and [t/x ]At ′ is defined then [t/x ]At ′ has no holes.

Lemma (Totality and Type Preservation)

If Γ ` t : A and Γ, x : A, Γ′ ` t ′ : B, then there exists a term s such that [t/x ]At ′ = s and
Γ, Γ′ ` s : B.

Lemma (Normality Preservation)

If Γ ` n : A and Γ, x : A, Γ′ ` n′ : A′ then [n/x ]An′ is normal.

Lemma (Soundness with Respect to Reduction)

If Γ ` t : A and Γ, x : A, Γ′ ` t ′ : B then [t/x ]t ′  ∗ [t/x ]At ′.
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Concluding Normalization

Definition

The interpretation of types [[T ]]Γ is defined by:

n ∈ [[T ]]Γ ⇐⇒ Γ ` n : T

We extend this definition to non-normal terms t in the following way:

t ∈ [[T ]]Γ ⇐⇒ ∃n.t  ! n ∈ [[T ]]Γ

Lemma (Hereditary Substitution for the Interpretation of Types)

If n ∈ [[T ]]Γ and n′ ∈ [[T ′]]Γ,x :T ,Γ′ , then [n/x ]T n′ ∈ [[T ′]]Γ,Γ′ .

Theorem (Type Soundness)

If Γ ` t : T then t ∈ [[T ]]Γ.
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Conclusion

I We defined hereditary substitution function using the ordering (A, t , t ′).

I It can be used to show normalization of the λ∆-calculus.

I Currently formalizing all of this in the Coq proof assistant.

I Future work:
I Formulate the canonical predicative classical logical framework.

I Giving a categorical semantics of hereditary substitution.
I Potentially usable to define the hereditary substitution function for

Girard-Reynolds system F.
I Formulate the hereditary substitution function for Gödel’s system T.

Thank you!
Harley Eades (CL&C 2012) Hereditary Substitution for the λ∆-Calculus 15 / 15



Multi-Holed Contexts

Recall the usual definition of single-hole contexts:

C ::= � |λx : T .C |∆x : T .C | t C | C t

We extend this definition to multi-holed context as follows:

C ::= �i |λx : T .C |∆x : T .C | t C | C t

where i ∈ N.

Definition (Well-Formed Multi-Holed Context)

A context C is well formed if C does not have more than one hole with the same i .

We denote the set of all well-formed contexts as E .

Definition (Context Hole Filling)

If C is a well-formed context with i holes then C[
−→
t i ] = C[t1, . . . , ti ], where ti fills �i .
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Hereditary Substitution

Definition (Well-founded ordering on types)

We define an ordering on types T as the compatible closure of the following
formulas.

T1 → T2 > T1
T1 → T2 > T2

Absurdity and base types are minimal elements.

We denote the reflexive-transitive closure of > as ≥.
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Hereditary Substitution

Definition

We define the partial function ctype : Ψ→ T → T → T which computes the
type of an application in head normal form. It is defined as follows:

ctypeT (x , x) = T
ctypeT (x , t1 t2) = T ′′

Where ctypeT (x , t1) = T ′ → T ′′.

Lemma (Properties of ctype)

i. If ctypeT (x , t) = T ′ then head(t) = x and T ′ ≤ T .
ii. If Γ, x : T , Γ′ ` t : T ′ and ctypeT (x , t) = T ′′ then T ′ ≡ T ′′.
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Full ctype Properties

Lemma (Properties of ctype)

i. If ctypeT (x , t) = T ′ then head(t) = x and T ′ is a subexpression of T .
ii. If Γ, x : T , Γ′ ` t : T ′ and ctypeT (x , t) = T ′′ then T ′ ≡ T ′′.

iii. If Γ, x : T , Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x ]T t1 = λy : T1.t ′, and t1 is not a
λ-abstraction, then there exists a type A such that ctypeT (x , t1) = A.

iv. If Γ, x : T , Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x ]T t1 = ∆y : ¬(T ′′ → T ′).t ′, and t1 is
not a µ-abstraction, then there exists a type A such that ctypeT (x , t1) = A.
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