Hereditary Substitution for the $\lambda\Delta$ *-Calculus*

Harley Eades and Aaron Stump Computer Science

CL&C 2012

- ► The λ∆-Calculus
- Hereditary Substitution
- \blacktriangleright The problem with defining the hereditary substitution function for the $\lambda\Delta\text{-calculus}$
- How we solve this problem
- Properties of the Hereditary Substitution Function
- Concluding Normalization

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► A type theory correspoding to classical natural deduction.
- ► Originally defined by J. Rehof and M. Sørensen in 1994.
- Provably equalivalent to M. Parigot's $\lambda\mu$ -Calculus.
- ► The bases of classical pure type systems (G. Barthe, J. Hatcliff, M. Sørensen 1997).

Syntax:

$$T, A, B, C ::= \pm |b| A \rightarrow B$$

$$t ::= x | \lambda x : T.t | \Delta x : T.t | t_1 t_2$$

$$n, m ::= \lambda x : T.n | \Delta x : T.n | h$$

$$h ::= x | hn$$

We denote the set of all terms T and the set of all types Ψ .

► Reduction:

$$\overline{(\lambda x:T.t) t' \rightsquigarrow [t'/x]t}$$
 Beta

 $\frac{y \text{ fresh in } t \text{ and } t'}{(\Delta x : \neg(T_1 \to T_2).t) t' \rightsquigarrow \Delta y : \neg T_2.[\lambda z : T_1 \to T_2.(y (z t'))/x]t} \quad \text{STRUCTRED}$

Harley Eades (CL&C 2012)

・ロト < 団ト < 三ト < 三ト < ロト

► Typing Rules:

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash t_2 : A} \quad Ax \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : A \to B} \quad LAM$$

$$\frac{\Gamma \vdash t_2 : A}{\Gamma \vdash t_1 : A \to B} \quad APP \quad \frac{\Gamma, x : \neg A \vdash t : \bot}{\Gamma \vdash \Delta x : \neg A \cdot t : A} \quad DELTA$$

<ロ> < 団> < 団> < 三> < 三> < 三</p>

- Syntax: $[t/x]^{A}t' = t''$.
- Usual termination order: (A, t').
- Like ordinary capture avoiding substitution.
- Except, if the substitution introduces a redex, then that redex is recursively reduced.
 - Example: $[\lambda z : b.z/x]^{b \to b}(x y) (\approx ((\lambda z : b.z) y \approx [y/z]^{b}z) = y.$
- The constructive content of normalization proofs dating all the way back to Prawitz (1965).
- First made explicit by K. Watkins for simple types and R. Adams for dependent types.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 = りへの

► Recall how hereditary substitution works for β -reduction: $[\lambda z : b.z/x]^{b \to b}(x y) (\approx ((\lambda z : b.z) y \approx [y/z]^{b} z) = y$

<ロ> <同> <同> <目> <同> <目> <同> <同> <同> <同</p>

- ► Recall how hereditary substitution works for β -reduction: $[\lambda z : b.z/x]^{b \to b}(x y) (\approx ((\lambda z : b.z) y \approx [y/z]^{b}z) = y$
- ► The naive solution for structural reduction: $[\Delta x : \neg (A'' \to A').(x q)/z]^{(A'' \to A')}(z r) = \Delta y : \neg A'.[(\lambda u : A'' \to A'.(y (u r)))/x]^{\neg (A'' \to A')}(x q)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Recall how hereditary substitution works for β -reduction: [$\lambda z : b.z/x$]^{b→b}(x y)($\approx ((\lambda z : b.z) y \approx [y/z]^b z$) = y
- ► The naive solution for structural reduction: $[\Delta x : \neg (A'' \to A').(x q)/z]^{(A'' \to A')}(z r) = \Delta y : \neg A'.[(\lambda u : A'' \to A'.(y (u r)))/x]^{\neg (A'' \to A')}(x q)$
 - The cut type actually increased!
- The problem: The usual termination order (A, t') no longer works.
 - How do we fix this?

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 = りへの

Consider: $((\Delta x : \neg (A'' \rightarrow A').t) t') \rightsquigarrow \Delta y : \neg A'.[(\lambda u : A'' \rightarrow A'.(y (u t')))/x]t$

・ロト < 団ト < 三ト < 三ト < ロト

Consider: $((\Delta x : \neg (A'' \rightarrow A').t) t') \rightsquigarrow \Delta y : \neg A'.[(\lambda u : A'' \rightarrow A'.(y (u t')))/x]t$

・ロト < 団ト < 三ト < 三ト < ロト

Consider: $((\Delta x : \neg (A'' \rightarrow A').t) t') \rightsquigarrow \Delta y : \neg A'.[(\lambda u : A'' \rightarrow A'.(y (u t')))/x]t$

When redexes are created:

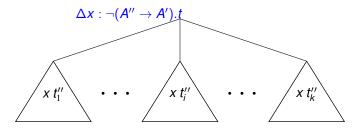
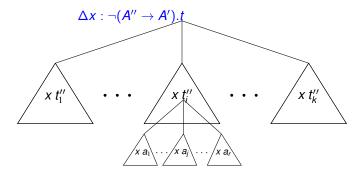


Image: A matrix and a matrix

● E = ● E = ● ● ●

Consider: $((\Delta x : \neg (A'' \rightarrow A').t) t') \rightsquigarrow \Delta y : \neg A'.[(\lambda u : A'' \rightarrow A'.(y (u t')))/x]t$

When redexes are created:



< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider the previous example:

 $[\Delta x:\neg(A^{\prime\prime}\rightarrow A^{\prime}).(x\,q)/z]^{(A^{\prime\prime}\rightarrow A^{\prime})}(z\,r)=\Delta y:\neg A^{\prime}.[(\lambda u:A^{\prime\prime}\rightarrow A^{\prime}.(y\,(u\,r)))/x]^{\neg(A^{\prime\prime}\rightarrow A^{\prime})}(x\,q)$

Recursively reducing the redexes introduced by substituting the linear λ-abstraction:

 $[\Delta x: \neg (A^{\prime\prime} \to A^{\prime}).(x q)/z]^{(A^{\prime\prime} \to A^{\prime})}(z r) = \Delta y: \neg A^{\prime}.(y [q/u]^{(A^{\prime\prime} \to A^{\prime})}(u r))$

・ロト < 目 > < 目 > < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

Consider the previous example:

 $[\Delta x: \neg (A^{\prime\prime} \rightarrow A^{\prime}).(x q)/z]^{(A^{\prime\prime} \rightarrow A^{\prime})}(z r) = \Delta y: \neg A^{\prime}.[(\lambda u: A^{\prime\prime} \rightarrow A^{\prime}.(y (u r)))/x]^{\neg (A^{\prime\prime} \rightarrow A^{\prime})}(x q)$

 Recursively reducing the redexes introduced by substituting the linear λ-abstraction:

 $[\Delta x: \neg (A^{\prime\prime} \rightarrow A^{\prime}).(x q)/z]^{(A^{\prime\prime} \rightarrow A^{\prime})}(z r) = \Delta y: \neg A^{\prime}.(y [q/u]^{(A^{\prime\prime} \rightarrow A^{\prime})}(u r))$

- The cut type stayed the same.
- But the term we are substituting has decreased.
- Is this always the case? Basically, it is!

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 = りへの

- The term we are substituting either decrease structurally or decreases contextually.
 - ► Structural decrease: $\forall t, t'.t < t'$ if t' is a strict subexpression of t.
 - Contextual decrease: A term is considered larger than itself with a hole.
 - $\blacktriangleright \quad \forall \mathcal{C}, t. \mathcal{C} < t \text{ if } \exists s. \mathcal{C}[s] \equiv t.$
- ► Using this insight the hereditary substitution function is defineable using the ordering (A, t, t').

 $[t/x]^A \Box = \Box$ Type: $\mathcal{T} \cup \mathcal{E} \to \mathcal{T} \to \Psi \to \mathcal{T} \cup \mathcal{E} \to \mathcal{T} \cup \mathcal{E}$ $[t/x]^A x = t$ Total using the ordering: (A, t, t') $[t/x]^A y = y$ Where y is a variable distinct from x. $[t/x]^{A}(\lambda y : A'.t') = \lambda y : A'.([t/x]^{A}t')$ Where FV $(t) \cap$ FV $(t') = \emptyset$. $[t/x]^{A}(\Delta y : A'.t') = \Delta y : A'.([t/x]^{A}t')$ Where FV $(t) \cap$ FV $(t') = \emptyset$. $[t/x]^{A}(t_{1} t_{2}) = ([t/x]^{A}t_{1})([t/x]^{A}t_{2})$ Where $([t/x]^{A}t_{1})$ is not a λ -abstraction or Δ -abstraction, or both $([t/x]^{A}t_{1})$ and t_{1} are λ -abstractions or Δ -abstractions, or ctype_A(x, t₁) is undefined. $[t/x]^{A}(t_{1}, t_{2}) = [s_{2}'/v]^{A''}s_{1}'$ Where $([t/x]^A t_1) = \lambda y : A'' \cdot s'_1$ for some y, s'_1 and A'', $[t/x]^A t_2 = s'_2$, and ctype $A(x, t_1) = A'' \rightarrow A'$. $[t/x]^{A}(t_{1}, t_{2}) = \Delta z : \neg A'.([\lambda u : A'' \rightarrow A'.(z(us_{2}))/y]s_{1})$ Where $([t/x]^A t_1) = \Delta y : \neg (A'' \to A') \cdot s_1$ for some y, s_1, A'' , and there does not exists any context of s_1 equal to $C[y s'_1]$ for some term s'_1 , $([t/x]^A t_2) = s_2$ for some s_2 , z and u are fresh variables of type A' and A'' \rightarrow A' respectively, and ctype $_{4}(x, t_{1}) = A'' \rightarrow A'$. $[t/x]^{A}(t_{1},t_{2}) = \Delta z : \neg A' \cdot [\lambda u : A'' \rightarrow A' \cdot (z(us_{2}))/y](\text{fill } \mathcal{C}[\overrightarrow{\Box_{i}}] \mathcal{C}[z([s_{1}/q]^{A'' \rightarrow A'}(qs_{2}))])$ Where $([t/x]^{A}t_{1}) = \Delta y : \neg (A^{\prime\prime} \rightarrow A^{\prime}) . C[\overline{(y s_{1})_{i}}]$ for some *i*, *y*, *s*₁ and $A^{\prime\prime}$, $([t/x]^{A}t_{2}) = s_{2}$ for some s_{2} , z and r are fresh variables of type A' and A'' respectively, and ctype $A(x, t_1) = A'' \rightarrow A'$. ・ロト < 目 > < 目 > < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

 $[t/x]^A \Box = \Box$ Type: $\mathcal{T} \cup \mathcal{E} \to \mathcal{T} \to \Psi \to \mathcal{T} \cup \mathcal{E} \to \mathcal{T} \cup \mathcal{E}$ $[t/x]^A x = t$ Total using the ordering: (A, t, t') $[t/x]^A y = y$ Where y is a variable distinct from x. $[t/x]^{A}(\lambda y : A'.t') = \lambda y : A'.([t/x]^{A}t')$ Where FV (t) \cap FV (t') = \emptyset . $[t/x]^{A}(\Delta y : A'.t') = \Delta y : A'.([t/x]^{A}t')$ Where FV (t) \cap FV (t') = \emptyset . $[t/x]^{A}(t_{1} t_{2}) = ([t/x]^{A}t_{1})([t/x]^{A}t_{2})$ Where $([t/x]^{A}t_{1})$ is not a λ -abstraction or Δ -abstraction, or both $([t/x]^{A}t_{1})$ and t_{1} are λ -abstractions or Δ -abstractions, or ctype_A(x, t₁) is undefined. $[t/x]^{A}(t_{1}, t_{2}) = [s_{2}'/v]^{A''}s_{1}'$ Where $([t/x]^A t_1) = \lambda y : A'' \cdot s'_1$ for some y, s'_1 and A'', $[t/x]^A t_2 = s'_2$, and ctype $_{\mathcal{A}}(x, t_1) = A'' \rightarrow A'$. $[t/x]^{A}(t_{1} t_{2}) = \Delta z : \neg A'.([\lambda u : A'' \rightarrow A'.(z (u s_{2}))/y]s_{1})$ Where $([t/x]^A t_1) = \Delta y : \neg (A'' \rightarrow A') \cdot s_1$ for some y, s_1, A'' , and there does not exists any context of s_1 equal to $C[y s'_1]$ for some term s'_1 , $([t/x]^A t_2) = s_2$ for some s_2 , z and u are fresh variables of type A' and A'' \rightarrow A' respectively, and ctype $_{4}(x, t_{1}) = A'' \rightarrow A'$. $[t/x]^{A}(t_{1} t_{2}) = \Delta z : \neg A' . [\lambda u : A'' \rightarrow A' . (z (u s_{2}))/y](\text{fill } \mathcal{C}[\overrightarrow{\Box_{i}}] \mathcal{C}[z ([s_{1}/q]^{A'' \rightarrow A'} (a s_{2}))])$ Where $([t/x]^A t_1) = \Delta y : \neg (A^{\prime\prime} \to A^{\prime}) . C[\overline{(y s_1)_i}]$ for some *i*, *y*, *s*₁ and $A^{\prime\prime}$, $([t/x]^{A}t_{2}) = s_{2}$ for some s_{2} , z and r are fresh variables of type A' and A'' respectively, and ctype $A(x, t_1) = A'' \rightarrow A'$. ・ロト < 目 > < 目 > < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

 $[t/x]^A \Box = \Box$ Type: $\mathcal{T} \cup \mathcal{E} \to \mathcal{T} \to \Psi \to \mathcal{T} \cup \mathcal{E} \to \mathcal{T} \cup \mathcal{E}$ $[t/x]^A x = t$ Total using the ordering: (A, t, t') $[t/x]^A y = y$ Where y is a variable distinct from x. $[t/x]^{A}(\lambda y : A'.t') = \lambda y : A'.([t/x]^{A}t')$ Where FV $(t) \cap$ FV $(t') = \emptyset$. $[t/x]^{A}(\Delta y : A'.t') = \Delta y : A'.([t/x]^{A}t')$ Where FV $(t) \cap$ FV $(t') = \emptyset$. $[t/x]^{A}(t_{1} t_{2}) = ([t/x]^{A}t_{1})([t/x]^{A}t_{2})$ Where $([t/x]^{A}t_{1})$ is not a λ -abstraction or Δ -abstraction, or both $([t/x]^{A}t_{1})$ and t_{1} are λ -abstractions or Δ -abstractions, or ctype_A(x, t₁) is undefined. $[t/x]^{A}(t_{1}, t_{2}) = [s_{2}'/v]^{A''}s_{1}'$ Where $([t/x]^A t_1) = \lambda y : A'' \cdot s'_1$ for some y, s'_1 and A'', $[t/x]^A t_2 = s'_2$, and ctype $A(x, t_1) = A'' \rightarrow A'$. $[t/x]^{A}(t_{1}, t_{2}) = \Delta z : \neg A'.([\lambda u : A'' \rightarrow A'.(z(us_{2}))/y]s_{1})$ Where $([t/x]^A t_1) = \Delta y : \neg (A'' \rightarrow A') \cdot s_1$ for some y, s_1, A'' , and there does not exists any context of s_1 equal to $C[y s'_1]$ for some term s'_1 , $([t/x]^A t_2) = s_2$ for some s_2 , z and u are fresh variables of type A' and A'' \rightarrow A' respectively, and ctype $_{4}(x, t_{1}) = A'' \rightarrow A'$. $[t/x]^{A}(t_{1},t_{2}) = \Delta z : \neg A'.[\lambda u : A'' \to A'.(z(us_{2}))/y](\text{fill } C[\overrightarrow{\Box}_{i}] \overrightarrow{C[z([s_{1}/q]^{A'' \to A'}(qs_{2}))]})$ Where $([t/x]^A t_1) = \Delta y : \neg (A'' \to A') \cdot C[\overline{(y s_1)_i}]$ for some *i*, *y*, *s*₁ and A'', $([t/x]^{A}t_{2}) = s_{2}$ for some s_{2} , z and r are fresh variables of type A' and A'' respectively, and ctype $A(x, t_1) = A'' \rightarrow A'$. ・ロト < 目 > < 目 > < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

Hereditary Substitution: Handling Structural Reduction

Case when no further redexes are created:

$$\begin{split} & [t/x]^A(t_1 t_2) = \Delta z : \neg A'.([\lambda u : A'' \to A'.(y(u s_2))/y]s_1) \\ & \text{Where} \left([t/x]^A t_1\right) = \Delta y : \neg (A'' \to A').s_1 \text{ for some } y, s_1, A'', \text{ and there does not exists any} \\ & \text{context of } s_1 \text{ equal to } \mathcal{C}[y s_1'] \text{ for some term } s_1', ([t/x]^A t_2) = s_2 \text{ for some } s_2, z \text{ and } u \text{ are} \\ & \text{fresh variables of type } A' \text{ and } A'' \to A' \text{ respectively, and ctype}_A(x, t_1) = A'' \to A'. \end{split}$$

Hereditary Substitution: Handling Structural Reduction

Case when no further redexes are created:

$$\begin{split} &[t/x]^{A}(t_{1},t_{2}) = \Delta z : \neg A'.([\lambda u : A'' \to A'.(y(u s_{2}))/y]s_{1}) \\ & \text{Where}\left([t/x]^{A}t_{1}\right) = \Delta y : \neg (A'' \to A').s_{1} \text{ for some } y, s_{1}, A'', \text{ and there does not exists any } \\ & \text{context of } s_{1} \text{ equal to } \mathcal{C}[y s_{1}'] \text{ for some term } s_{1}', ([t/x]^{A}t_{2}) = s_{2} \text{ for some } s_{2}, z \text{ and } u \text{ are } \\ & \text{fresh variables of type } A' \text{ and } A'' \to A' \text{ respectively, and ctype}_{A}(x, t_{1}) = A'' \to A'. \end{split}$$

- Case when structural reduction will introduce more redexes:
 - $\begin{bmatrix} t/x \end{bmatrix}^{A} (t_{1} t_{2}) = \Delta z : \neg A' . [\lambda u : A'' \rightarrow A' . (z (u s_{2}))/y] (\text{fill } C[\overrightarrow{\Box_{i}}] \overline{C[z ([s_{1}/q]^{A'' \rightarrow A'} (q s_{2}))]})$ $\text{Where } ([t/x]^{A}t_{1}) = \Delta y : \neg (A'' \rightarrow A') . C[\overline{(y s_{1})}] \text{ for some } i, y, s_{1} \text{ and } A'',$ $([t/x]^{A}t_{2}) = s_{2} \text{ for some } s_{2}, z \text{ and } r \text{ are fresh variables of type } A' \text{ and } A'' \text{ respectively,}$ $\text{ and ctype}_{A}(x, t_{1}) = A'' \rightarrow A'.$
 - Do not substitute the linear lambda-abstractions, but reduce them right away.
 - $\overrightarrow{C[t]}$: Expands the context into a list of lists of subcontexts.
 - If $A \equiv A'' \rightarrow A'$ then we know $t_1 \equiv x$ and $t \equiv \Delta y : \neg (A'' \rightarrow A') \cdot C[\overline{(y s_1)_i}]$.
 - Hence $s_1 < t$.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 = りへの

Properties of Hereditary Substitution

Lemma (No Holes)

If $\Gamma \vdash t : A$, $\Gamma, x : A, \Gamma' \vdash t' : B$ and $[t/x]^A t'$ is defined then $[t/x]^A t'$ has no holes.

Lemma (Totality and Type Preservation)

If $\Gamma \vdash t : A$ and $\Gamma, x : A, \Gamma' \vdash t' : B$, then there exists a term s such that $[t/x]^A t' = s$ and $\Gamma, \Gamma' \vdash s : B$.

Lemma (Normality Preservation)

If $\Gamma \vdash n : A$ and $\Gamma, x : A, \Gamma' \vdash n' : A'$ then $[n/x]^A n'$ is normal.

Lemma (Soundness with Respect to Reduction)

If $\Gamma \vdash t : A$ and $\Gamma, x : A, \Gamma' \vdash t' : B$ then $[t/x]t' \rightsquigarrow^* [t/x]^A t'$.

・ロト ・ 戸 ト ・ ヨ ト

Definition

The interpretation of types $[T]_{\Gamma}$ is defined by:

$$n \in \llbracket T \rrbracket_{\Gamma} \iff \Gamma \vdash n : T$$

We extend this definition to non-normal terms *t* in the following way:

$$t \in \llbracket T \rrbracket_{\Gamma} \iff \exists n.t \rightsquigarrow^! n \in \llbracket T \rrbracket_{\Gamma}$$

Lemma (Hereditary Substitution for the Interpretation of Types)

If $n \in \llbracket T \rrbracket_{\Gamma}$ and $n' \in \llbracket T' \rrbracket_{\Gamma,x:T,\Gamma'}$, then $[n/x]^T n' \in \llbracket T' \rrbracket_{\Gamma,\Gamma'}$.

Theorem (Type Soundness)

If $\Gamma \vdash t : T$ then $t \in \llbracket T \rrbracket_{\Gamma}$.

イロト イポト イヨト イヨト

Conclusion

- We defined hereditary substitution function using the ordering (A, t, t').
- It can be used to show normalization of the $\lambda\Delta$ -calculus.
- Currently formalizing all of this in the Coq proof assistant.
- ► Future work:
 - ► Formulate the canonical predicative classical logical framework.
 - Giving a categorical semantics of hereditary substitution.
 - Potentially usable to define the hereditary substitution function for Girard-Reynolds system F.
 - ► Formulate the hereditary substitution function for Gödel's system T.

Thank you!

Multi-Holed Contexts

Recall the usual definition of single-hole contexts:

 $\mathcal{C} ::= \Box \mid \lambda x : T.\mathcal{C} \mid \Delta x : T.\mathcal{C} \mid t\mathcal{C} \mid \mathcal{C} t$

We extend this definition to multi-holed context as follows:

 $\mathcal{C} ::= \Box_i | \lambda x : T.\mathcal{C} | \Delta x : T.\mathcal{C} | t\mathcal{C} | \mathcal{C} t$

where $i \in \mathbb{N}$.

Definition (Well-Formed Multi-Holed Context)

A context C is well formed if C does not have more than one hole with the same *i*.

We denote the set of all well-formed contexts as \mathcal{E} .

Definition (Context Hole Filling)

If C is a well-formed context with *i* holes then $C[\vec{t}_i] = C[t_1, \ldots, t_i]$, where t_i fills \Box_i .

Definition (Well-founded ordering on types)

We define an ordering on types T as the compatible closure of the following formulas.

$$egin{array}{rcl} T_1
ightarrow T_2 &> & T_1 \ T_1
ightarrow T_2 &> & T_2 \end{array}$$

Absurdity and base types are minimal elements.

We denote the reflexive-transitive closure of > as \ge .

Image: Image:

Definition

We define the partial function ctype : $\Psi \rightarrow T \rightarrow T \rightarrow T$ which computes the type of an application in head normal form. It is defined as follows:

$$\begin{array}{l} \mathsf{ctype}_{\mathcal{T}}(x,x) = \mathcal{T} \\ \mathsf{ctype}_{\mathcal{T}}(x,t_{1}\,t_{2}) = \mathcal{T}'' \\ \mathsf{Where } \mathsf{ctype}_{\mathcal{T}}(x,t_{1}) = \mathcal{T}' \to \mathcal{T}''. \end{array}$$

Lemma (Properties of Ctype)

- *i.* If $ctype_T(x, t) = T'$ then head(t) = x and $T' \leq T$.
- *ii.* If Γ , x : T, $\Gamma' \vdash t : T'$ and $ctype_T(x, t) = T''$ then $T' \equiv T''$.

(日) (局) (日) (日) (日) (日)

Lemma (Properties of Ctype)

- *i.* If $ctype_T(x,t) = T'$ then head(t) = x and T' is a subexpression of T.
- *ii.* If Γ , x : T, $\Gamma' \vdash t : T'$ and $ctype_T(x, t) = T''$ then $T' \equiv T''$.
- *iii.* If Γ , x : T, $\Gamma' \vdash t_1 t_2 : T'$, $\Gamma \vdash t : T$, $[t/x]^T t_1 = \lambda y : T_1 \cdot t'$, and t_1 is not a λ -abstraction, then there exists a type A such that $ctype_T(x, t_1) = A$.
- *iv.* If $\Gamma, x : T, \Gamma' \vdash t_1 t_2 : T', \Gamma \vdash t : T, [t/x]^T t_1 = \Delta y : \neg(T'' \rightarrow T').t'$, and t_1 is not a μ -abstraction, then there exists a type A such that ctype_T(x, t_1) = A.

◆□▶ ◆圖▶ ◆필▶ ◆필★