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Abstract
This paper investigates the reach of the proof technique of normalization by hereditary substitution due
to K. Watkins et al., by showing how it can be applied to three example type systems with advanced
features. The first two systems are extensions of Stratified System F (SSF), a type theory of predicative
polymorphism studied by D. Leivant. We extend SSF first with sum types and commuting conversions,
and then with types expressing equalities between terms. For the third system, we consider an extension
of the Simply Typed Lambda Calculus (STLC) with types expressing equalities between types. We show
how normalization by hereditary substitution can be applied to these different advanced typing features,
and identify several new properties resulting from defining the hereditary substitution function on open
terms.

1 Introduction

The Tait-Girard reducibility method is a well-known technique for proving normalization of sim-
ply typed and polymorphic lambda calculi; see [10] for an excellent discussion of the reducibil-
ity method. This technique is, however, very intricate, which makes it difficult to apply to new
theories. Therefore an easier technique is of interest to the research community. The hereditary-
substitutions method is qualitatively simpler than proof by reducibility. For example, the proof of
the type soundness theorem using reducibility requires a quantification over substitutions satisfying
the typing context, but no quantification over substitutions is required for normalization by heredi-
tary substitution. The hereditary-substitutions method is also (at least nominally) proof-theoretically
less complex than proof by reducibility. The central concept of reducibility is defined by recursion
on types, introducing new quantifiers in alternating polarity. To formalize the argument, one thus
needs a logic in which quantified formulas can be defined by recursion. In contrast, the central def-
initions for the hereditary-substitutions method can be expressed without such rich constructions,
and thus should be formalizable in much weaker theories. These advantages suggest that proof by
hereditary substitution may be easier to apply to new theories, and simpler to formalize, than proof
by reducibility. The drawback is that it is unclear if the method can scale to richer type theories.
This paper contributes to understanding which type theories can be shown to be normalizing using
this method.

Overview of the method. There are six essential steps that need to be taken in order to conclude
normalization by the hereditary substitution proof method. First, an ordering on the types of the
type theory under consideration must be defined. Following the ordering on types the hereditary
substitution function must be defined. Then it must be shown that the hereditary substitution function
satisfies several properties: i. totality and type preservation, ii. normality preservation, and iii.
soundness with respect to reduction. The first two properties of the hereditary substitution function
are well-known, but the third to our knowledge is novel. The third property is a safety check insuring
that the hereditary subtitution function is obeying the reduction strategy of the system it is defined
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for. This will become more clear when we actually state the results for each system below. In fact
we will formally define each of these results for the analyzed type theories below. The next major
part of proof by hereditary substitution is defining a semantics for the types of the type theory under
consideration. We call this semantics the interpretation of types. The interpretations of types are
essentially sets of terms with a common type in a context. In order to conclude type soundness using
our semantics for types we must prove a vital result called the main substitution lemma which shows
that the interpretations of types are closed under hereditary substitutions.

Related and previous work. The central idea of hereditary substitution is essentially to prove
normalization using a lexicographic combination of an ordering on the types and the strict subepxres-
sion ordering on proofs. This central idea has been used in normalization proofs dating all the way
back to Prawitz in 1965 where he shows normalizaion for natural deduction [18] (Chapter 4). It
arises again in Lévy’s work in [15]. A proof of normalization of the STLC using this idea can be
found in Chapter Four of [10]. A similar proof can be found in [4] (Chapter 2 Theorem 2.2.9). Yet
another proof can be found in [12] for STLC. In fact F. Joachimski and R. Matthes actually show
weak and strong normalization for STLC using a lexicographic combination of the strict subexpres-
sion ordering on types and proofs. They then extend this to show strong normalization for STLC
extended with sum types and commuting conversions. Furthermore, he extends his method again to
show strong normalization of Gödel’s System T. For each system they also define a normalization
function on normal terms which amounts to a function similar to hereditary substitution. The con-
structive content of these proofs was first made explicit by K. Watkins et al. in [21] and R. Adams
in [3] for dependent types.

A. Abel in 2006 shows how to implement a normalizer using sized heterogeneous types which is
a function similar to the hereditary substitution function in [1]. He then uses hereditary substitution
to prove normalization of the type level of type theory with higher-order subtyping in [2]. This
results in a purely syntactic metathoery of his type theory. C. Keller and T. Altenkirch recently
implemented hereditary substitution as a normalization function for the simply typed λ-calculus
in Agda [13]. Their results show that hereditary substitution can be used to decide βη-equality.
They found hereditary substitution to be convenient to use in a total Type Theory, because it can be
implemented without a termination proof. This is because the hereditary-substitution function can
be recognized as structurally recursive, and hence accepted directly by Agda’s termination checker.

In previous work, we showed how to apply the hereditary-substitutions method to prove nor-
malization of Stratified System F (SSF), a type theory of predicative polymorphism studied by
Leivant [9, 14]. However, the results here are considerably different. In our previous work we used
the central idea of the hereditary substitution function implicitly in the proof of the main substitution
lemma. In the current paper, we use the hereditary substitution explicitly in the statement of the main
substitution lemma and prove several necessary properties of the hereditary substitution function as
stated above. We consider this change to be the correct way of using the hereditary substitution
function in normalization proofs. We also consider more complicated type systems than the system
analyzed in the previous paper, with advanced features that are important in other lambda calculi. We
study three systems featuring, respectively, commuting conversions for sum types (Section 2), ex-
plicit equalities between terms (Section 3), and explicit equalities between types (Section 4). These
systems pose novel challenges for hereditary substitutions. For example, the third of these systems
is normalizing only for reduction strategies which do not reduce beneath lambda abstractions. We
devise non-trivial adaptations of the hereditary-substitutions method to prove normalization for each
of these systems.

Why Hereditary Substitution? To summarize, hereditary substitution is a proof technique for
showing normalization of typed lambda calculi. It promises to be easier to use than the reducibility
proof method, which is well known to be quite intricate and challenging to adapt to new theories,
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Syntax:
K := ∗0 | ∗1 | . . .
T := X | T → T | ∀X : K.T | T + T

t := x | λx : T.t | t t | ΛX : K.t | t[T ] | inl(t) | inr(t) | case t of x.t,x.t

Reduction Rules:
(ΛX : ∗p.t)[φ]  [φ/X]t
(λx : φ.t)t′  [t′/x]t

case inl(t) of x.t1,x.t2  [t/x]t1
case inr(t) of x.t1,x.t2  [t/x]t2

Commuting Conversions:
(case t of x.t1,x.t2) t′  case t of x.(t1 t′),x.(t2 t′)
case (case t of x.t1,x.t2) of y.s1,y.s2  case t of

x.(case t1 of y.s1,y.s2),
x.(case t1 of y.s1,y.s2)

Figure 1 Syntax, Reduction Rules, Commuting Conversions for SSF+

such as ones being developed for dependently typed programming languages like ATS [6], Epi-
gram [16], and others.

2 Stratified System F+ (SSF+)

Stratified System F+ is a predicative polymorphic type theory. Stratified polymorphism is used in
predicative type theories for universe hierarchies. SSF+ also has sum types φ1 + φ2, whose elim-
ination form case t of x1.t1, x2.t2 is used to case split on a whether or not term t with a sum type
is truly x1 of type φ1, or else x2 of type φ2. We consider sum types with so-called commuting
conversions, which allow independent cases to be permuted past each other (see Fig 1 below). Com-
muting conversions are well-known to pose technical difficulties for normalization proofs based on
reducibility (see [20] and Chapter 10 of [10]). We will see that they can be handled straightforwardly
with hereditary substitution.

The syntax, reduction rules, and commuting conversions for SSF+ can be found in Fig. 1. This
extension of SSF is based on the version of SSF used in [9]. The kind-assignment rules are defined
in Fig. 3 and the type-assignment rules in defined in Fig. 4. The kinding/typing relations depend on
well-formed contexts which are defined in Fig. 2. To ensure substitutions over contexts behave in an
expected manner, we rename variables as necessary to ensure contexts have at most one declaration
per variable. Lastly, throughout this paper we use various basic meta-theoretic results for each
system. Due to space constraints we do not show them here, but in the companion report [8]. The
reader will also find all omitted proofs in the companion report.

· Ok
Γ Ok

Γ, X : ∗p Ok
Γ ` φ : ∗p Γ Ok

Γ, x : φ Ok

Figure 2 Well-formedness of Contexts for SSF+

2.1 Ordering on Types

In this section we define an ordering on types. This ordering is curcial for the hereditary substitution
method. We will see in Section 2.3 that we prove several properties of the hereditary substitution
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Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 → φ2 : ∗max(p,q)

Γ, X : ∗q ` φ : ∗p
Γ ` ∀X : ∗q.φ : ∗max(p,q)+1

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 + φ2 : ∗max(p,q)

Γ(X) = ∗p
Γ Ok p ≤ q

Γ ` X : ∗q

Figure 3 SSF+ Kinding Rules

Γ(x) = φ

Γ Ok
Γ ` x : φ

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2

Γ ` t1 : φ1 → φ2

Γ ` t2 : φ1

Γ ` t1t2 : φ2

Γ, X : ∗l ` t : φ
Γ ` ΛX : ∗l.t : ∀X : ∗l.φ

Γ ` t : ∀X : ∗l.φ1

Γ ` φ2 : ∗l
Γ ` t[φ2] : [φ2/X]φ1

Γ ` t : φ1

Γ ` φ2 : ∗p
Γ ` inl(t) : φ1 + φ2

Γ ` t : φ2

Γ ` φ1 : ∗p
Γ ` inr(t) : φ1 + φ2

Γ ` t : φ1 + φ2

Γ, x : φ1 ` t1 : ψ
Γ, x : φ2 ` t2 : ψ

Γ ` case t of x.t1,x.t2 : ψ

Figure 4 SSF+ Type-Assignment Rules

function defined in Section 2.2. The ordering used in these proofs is the lexicographic ordering
consisting of the the ordering we are about to define and the strict subexpression ordering on terms.
In fact if no ordering on types exists then one cannot prove the necessary properties of the hereditary
substitution function needed to conclude normalization.

I Definition 1. The ordering >Γ is defined as the least relation satisfying the universal closures of
the following formulas:

φ1 → φ2 >Γ φ1

φ1 → φ2 >Γ φ2

φ1 + φ2 >Γ φ1

φ1 + φ2 >Γ φ2

∀X : ∗l.φ >Γ [φ′/X]φ where Γ ` φ′ : ∗l.

I Theorem 2 (Well-Founded Ordering). The ordering >Γ is well-founded on types φ such that
Γ ` φ : ∗l for some l.

We need transitivity in a number of places in the proof of the main substitution lemma.

I Lemma 3 (Transitivity of >Γ). Let φ, φ′, and φ′′ be kindable types. If φ >Γ φ
′ and φ′ >Γ φ

′′

then φ >Γ φ
′′.

2.2 The Hereditary Substitution Function

We will work through the hereditary substitution method in more detail for this first example system
than for the other two. The difference between ordinary capture avoiding substitution and hereditary
substitution is if as a result of substitution a new redex is created, then that redex is recursively
reduced. The hereditary substitution function is denoted [t/x]φt′ where φ is called the cut type, due
to the relation of the hereditary substitution function and cut elimination, and t′ is called the principle
term of substitution. The purpose of the cut type is that it is used to ensure that the definition of the
function is well founded. We will see this connection below. We now turn to defining this function
for SSF+.

The definition of the hereditary substitution function for SSF+ is in Fig. 5 and Fig. 6. First, one
should read this definition as a mutually recursive function in terms of the hereditary substitution
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function [t/x]φt′, the application reduction function appφ t1 t2, and case construct reduction func-
tion rcaseφ t0 x t1 t2. The definitions of all these functions depend on a partial function called
ctypeφ(x, t) which returns the type of a term t if that term is in weak-head normal form. This
function is equivalent to the treduce function used in [21]. A brief explanation of the definition of
the hereditary substitution function is the following. One should read the “where”-conditions below
some of the cases of the definitions of each function as preconditions. The definition of ctypeφ is
straightforward. Now the definition of the hereditary substitution function has the form one would
expect for a substitution function. In fact the only difference between the definition of the hereditary
substitution function and capture avoiding substitution is really present in the cases for applications,
type instantiation, and case constructs. These are the locations where new redexes can be created by
substitution.

Consider application. Based on the definition of the reduction rules we have two forms of re-
dexes: either a β-redex or a commuting coversion where a case construct is applied to an argument.
In order to create a new β-redex as a result of substitution we must be substituting into a term of the
form x t1 · · · tn. The hereditary substitution function detects this by using the ctypeφ function. We
will show that if this function is defined then the head of the input term must be a variable x thus
implying that the input term is of the form we expect. Next we apply the hereditary substitution to
the head of the application and if that results in a λ-abstraction then we know that a new redex will
be created by substitution. Thus, we recursively reduce this redex using the hereditary substitution
function. We will see that the result of the ctypeφ function is in fact a subexpression of the cut type
φ. This tells us that the cut type in the case for creation of a new β-redex has reduced in the recursive
call to the hereditary substitution function.

Now in the definition of the hereditary substitution function where a new redex in the form of the
commuting conversion is created – in this case a case construct is applied to an argument – we again
know by the ctypeφ function that the head of the application is in the form x t1 · · · t2. Furthermore,
we know applying the hereditary substitution function to the head of the application results in a case
construct. So we recursively reduce the created redex in the same way the reduction rules do, but
when we push the argument into the branches of the resulting case construct more redexes may be
created. So to handle recursively reducing all of the newly created redexes in the branches we call
the application reduction function appφ. This function reduces redexes by recursively calling itself
and the hereditary substitution function. The remaining cases where new redexes are potentially
created are similar to these cases. The function rcaseφ handles reducing case constructs.

2.3 Properties of The Hereditary Substitution Function

We now turn to proving several properites of the hereditary substitution function. Since the various
functions involved in the definition of the hereditary substitution function including the hereditary
substitution function itself depends on the ctypeφ function we first establish its main properties.
The major property of this function is that its output is a subexpression of the cut type φ. This is
stated in part one of the next lemma. Part two is a sanity check which shows that the type returned
by ctypeφ is the right type. In other words it is the type of the second argument of the function.
The remaining parts of the lemma are used in the proofs of the other properties of the hereditary
substitution function. Recall in certain parts of the definition of the hereditary substitution function
it must be the case that ctypeφ is defined so the remaining parts of the properties lemma ensure this
is the case.

I Lemma 4 (Properties of ctypeφ).
i. If ctypeφ(x, t) = φ′ then head(t) = x and φ′ is a subexpression of φ.

ii. If Γ, x : φ,Γ′ ` t : φ′ and ctypeφ(x, t) = φ′′ then φ′ ≡ φ′′.
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ctypeφ(x, x) = φ

ctypeφ(x, t1 t2) = φ′′

Where typeφ(x, t1) = φ′ → φ′′.

appφ t1 t2 = t1 t2
Where t1 is not a λ-abstraction or a case construct.

appφ (λx : φ′.t1) t2 = [t2/x]φ
′
t1

appφ (case t0 of x.t1,x.t2) t = case t0 of x.(appφ t1 t),x.(appφ t2 t)

rcaseφ t0 y t1 t2 = case t0 of y.t1,y.t2
Where t0 is not an inject-left or an inject-right term or a case construct.

rcaseφ inl(t′) y t1 t2 = [t′/y]φ1 t1

rcaseφ inr(t′) y t1 t2 = [t′/y]φ2 t2

rcaseφ (case t′0 of x.t′1,x.t′2) y t1 t2 = case t′0 of x.(rcaseφ t′1 y t1 t2),x.(rcaseφ t′2 y t1 t2)

Figure 5 Hereditary Substitution Function for Stratified System F+

iii. If Γ, x : φ,Γ′ ` t1 t2 : φ′, Γ ` t : φ, [t/x]φt1 = λy : φ1.q, and t1 is not then there exists a type ψ such
that ctypeφ(x, t1) = ψ.

iv. If Γ, x : φ,Γ′ ` t1 t2 : φ′, Γ ` t : φ, [t/x]φt1 = case t′0 of y.t′1,y.t′2, and t1 is not then there exists a type
ψ such that ctypeφ(x, t1) = ψ.

v. If Γ, x : φ,Γ′ ` case t0 of y.t1,y.t2 : φ′, Γ ` t : φ, [t/x]φt0 = case t′0 of z.t′1,z.t′2, and t0 is not then there
exists a type ψ such that ctypeφ(x, t0) = ψ.

vi. If Γ, x : φ,Γ′ ` case t0 of y.t1,y.t2 : φ′, Γ ` t : φ, [t/x]φt0 = inl(t′), and t0 is not then there exists a
type ψ such that ctypeφ(x, t0) = ψ.

vii. If Γ, x : φ,Γ′ ` case t0 of y.t1,y.t2 : φ′, Γ ` t : φ, [t/x]φt0 = inr(t′), and t0 is not then there exists a
type ψ such that ctypeφ(x, t0) = ψ.

We now move on to proving the main properties of the hereditary substitution function. First, we
show that for typeable terms it is a total function and the output maintains the same type as the
principle term of substitution.

I Lemma 5 (Total and Type Preserving). Suppose Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′. Then
there exists a term t′′ such that [t/x]φt′ = t′′ and Γ,Γ′ ` t′′ : φ′.

The next result we show is that the hereditary substitution function cannot create new redexes. The
following example shows when a particular redex is destroyed by hereditary substitution.

I Example 6. Let t ≡ inl(a) for some variable a and t′ ≡ case (case x of y.y,y.y) of z.z,z.z
where Γ ` t : (φ1 + φ2) + φ, Γ ` a : φ1 + φ2, and Γ, x : (φ1 + φ2) + φ ` t′ : φ′. Now lets trace
the definition of the hereditary substitution function on the input t, x, and t′ and compute what the
image of [t/x](φ1+φ2)+φt′ will be. Well the first thing the hereditary substitution function does is
apply itself to all the parts of the case construct. So we must calculute the following results:
i. First we have to compute [t/x](φ1+φ2)+φ(case x of y.y,y.y). This requires us to compute

[t/x](φ1+φ2)+φx = t. Now the hereditary substitution functions checks to see if t is an inject-left
term or an inject-right term, if it is then we have created a new redex. It happens that t is so we
know [t/x](φ1+φ2)+φ(case x of y.y,y.y) = [a/y]φ1+φ2y = a.

ii. Second we must compute [t/x](φ1+φ2)+φy = y.
Now putting these pieces together we obtain [t/x](φ1+φ2)+φt′ = case a of z.z,z.z. Clearly, we no
longer have the right-hand side of the commuting conversion for case constructs.
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[t/x]φx = t

[t/x]φy = y

Where y is a variable distinct from x.
[t/x]φ(λy : φ′.t′) = λy : φ′.([t/x]φt′)
[t/x]φ(ΛX : ∗l.t′) = ΛX : ∗l.([t/x]φt′)
[t/x]φinr(t′) = inr([t/x]φt′)
[t/x]φinl(t′) = inl([t/x]φt′)
[t/x]φ(t1 t2) = ([t/x]φt1) ([t/x]φt2)

Where ([t/x]φt1) is not a λ-abstraction or a case construct, or both ([t/x]φt1)
and t1 are λ-abstractions or case constructs, or ctypeφ(x, t1) is undefined.

[t/x]φ(t1 t2) = [([t/x]φt2)/y]φ
′′
s′1

Where ([t/x]φt1) = λy : φ′′.s′1 for some y, s′1, and φ′′ and ctypeφ(x, t1) = φ′′ → φ′.
[t/x]φ(t1 t2) = case w of y.(appφ r ([t/x]φt2)),y.(appφ s ([t/x]φt2))

Where [t/x]φt1 = case w of y.r,y.s for some terms w, r, s and variable y, and
ctypeφ(x, t1) = φ′′ → φ′.

[t/x]φ(t′[φ′]) = ([t/x]φt′)[φ′]
Where [t/x]φt′ is not a type abstraction or t′ and [t/x]φt′ are type abstractions.

[t/x]φ(t′[φ′]) = [φ′/X]s′1
Where [t/x]φt′ = ΛX : ∗l.s′1, for some X , s′1 and Γ ` φ′ : ∗q , such that, q ≤ l and
t′ is not a type abstraction.

[t/x]φ(case t0 of y.t1,y.t2) = case ([t/x]φt0) of y.([t/x]φt1),y.([t/x]φt2)
Where ([t/x]φt0) is not an inject-left or an inject-right term or a case construct, or
([t/x]φt0) and t0 are both inject-left or inject-right terms or case constructs, or
ctypeφ(x, t0) is undefined.

[t/x]φ(case t0 of y.t1,y.t2) = rcaseφ ([t/x]φt0) y ([t/x]φt1) ([t/x]φt2)
Where ([t/x]φt0) is an inject-left or an inject-right term or a case construct and
ctypeφ(x, t0) = φ1 + φ2.

Figure 6 Hereditary Substitution Function for Stratified System F+ Continued

Showing redex preservation for the hereditary substitution function depends on the following func-
tion which contructs the set of redexes in a term.

I Definition 7. The following function constructs the set of redexes within a term:

rset(x) = ∅
rset(λx : φ.t) = rset(t)
rset(ΛX : ∗l.t) = rset(t)
rset(t1 t2)
= rset(t1, t2) if t1 is not a λ-abstraction.
= {t1 t2} ∪ rset(t′1, t2) if t1 ≡ λx : φ.t′1.
rset(t′′[φ′′])
= rset(t′′) if t′′ is not a type absraction.
= {t′′[φ′′]} ∪ rset(t′′′) if t′′ ≡ ΛX : ∗l.t′′′.
rset(inl(t)) = rset(t)
rset(inr(t)) = rset(t)
rset(case t0 of x.t1,x.t2)
= rset(t0) ∪ rset(t1, t2) if t1 is not an inject-left term or an inject-right term.
= {case t0 of x.t1,x.t2} ∪ rset(t0) ∪ rset(t1, t2) if t1 is an inject-left term or an inject-right term.
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The extention of rset to multiple arguments is defined as follows:

rset(t1, . . . , tn) =def rset(t1) ∪ · · · ∪ rset(tn).

I Lemma 8 (Redex Preserving). If Γ ` t : φ, Γ, x : φ,Γ′ ` t′ : φ′, and t′ then |rset(t′, t)| ≥
|rset([t/x]φt′)|.

It is easy to see that the previous lemma can be used to show that if the input to the hereditary
substitution function contains no redexes then the result will contain no redexes. That is, the function
is normality preserving. This is the key result when using the hereditary substitution function in
normalization proofs.

I Lemma 9 (Normality Preserving). If Γ ` n : φ and Γ, x : φ′ ` n′ : φ′ then there exists a
normal term n′′ such that [n/x]φn′ = n′′.

The final property of the hereditary substitution that needs to be proven is a safety property. Which
is that the hereditary substitution function does not deviate from the reduction rules. We call this
soundness with respect to reduction. We will see this property come into play in the proof of type
soundness.

I Lemma 10 (Soundness with Respect to Reduction). If Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′
then [t/x]t′  ∗ [t/x]φt′.

At this point we are ready to move on to concluding normalization.

2.4 Concluding Normalization

We now define the interpretation [[φ]]Γ of types φ in typing context Γ.

I Definition 11. The interpretation of types [[φ]] is defined by:

n ∈ [[φ]]Γ ⇐⇒ Γ ` n : φ

We extend this definition to non-normal terms t in the following way:

t ∈ [[φ]]Γ ⇐⇒ ∃n.t ! n ∈ [[φ]]Γ

We define t ! t′ to be t ∗ t′ and t′ is normal.
In the introduction we defined semantic inversion and asserted that it must hold with respect to

any interpretation of types used in a proof by hereditary substitution. It is easy to see that syntac-
tic inversion holds for every form of the SSF+ typing relation trivially. This fact yields semantic
inversion by definition of the interpretation of types. In this paper we will freely use syntactic and
semantic inversion lemmas without explicit reference.

Before moving on to proving soundness of typing and concluding normalization we need a basic
result about the interpretation of types: type substitution. It is used in the proof of the type soundness
theorem (Theorem 14).

I Lemma 12 (Type Substitution for the Interpretation of Types). If n ∈ [[φ′]]Γ,X:∗l,Γ′ and
Γ ` φ : ∗l then [φ/X]n ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

Substitution for the interpretation of types is as we have been calling it the main substitution
lemma. It is a crucial result, because it is needed in the proof of type soundness and it depends on
the hereditary substitution substitution function.
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t := x | λx : φ.t | t t | ΛX : K.t | t[φ] | join
φ := X | Πx : φ.φ | ∀X : K.φ | t = t

K := ∗0 | ∗1 | . . .

(ΛX : ∗p.t)[φ]  [φ/X]t
(λx : φ.t)t′  [t′/x]t

Figure 7 Syntax of Terms, Types, and Kinds and Reduction Rules for DSSF=

Γ(X) = ∗p
Γ Ok p ≤ q

Γ ` X : ∗q

Γ ` φ1 : ∗p
Γ, x : φ1 ` φ2 : ∗q

Γ ` Πx : φ1.φ2 : ∗max(p,q)

Γ, X : ∗q ` φ : ∗p
Γ ` ∀X : ∗q.φ : ∗max(p,q)+1

Γ ` t1 : φ
Γ ` t2 : φ Γ ` φ : ∗p

Γ ` t1 = t2 : ∗p

Figure 8 DSSF= Kinding Rules

I Lemma 13 (Hereditary Substitution for the Interpretation of Types). If n′ ∈ [[φ′]]Γ,x:φ,Γ′ ,
n ∈ [[φ]]Γ, then [n/x]φn′ ∈ [[φ′]]Γ,Γ′ .

Proof. By Lemma 5 we know there exists a term n̂ such that [n/x]φn′ = n̂ and Γ,Γ′ ` n̂ : φ′ and
by Lemma 9 n̂ is normal. Therefore, [n/x]φn′ = n̂ ∈ [[φ′]]Γ,Γ′ . J

We are now ready to present our main result.

I Theorem 14 (Type Soundness). If Γ ` t : φ then t ∈ [[φ]]Γ.

I Corollary 15 (Normalization). If Γ ` t : φ then t ! n.

3 Dependent Stratified System F= (DSSF=)

DSSF= is SSF extended with dependent types and equations between terms. Equations between
terms are an important concept in Martin-Löf type theory [11, 17], and play a central role also in
dependently typed programming languages, such as the second author’s GURU language [19]. The
syntax and reduction rules are defined in Fig. 7. The kind-assignment rules are defined in Fig. 8.
One thing to note regarding the kind-assignment rules is that the level of an equation is the same
level as the type of the terms in the equation. The terms used in an equation must have the same
type. Finally, the type-assignment rules are defined in Fig. 9. Note that t1 ↓ t2 denotes there exists
a term t such that t1  ∗ t and t2  ∗ t.

3.1 Syntactic Inversion

This section covers syntactic inversion of the typing relation. In Sect. 3.3 we define the interpretation
of types and semantic inversion must hold for this definition. Since the interpretation of types is
simply the restriction of the typing relation to normal forms syntactic inversion implies semantic
inversion. Hence, we only need to show syntactic inversion. Syntactic inversion depends on a
judgment called type syntactic equality. It is defined in Fig. 10. We show that syntactic conversion
holds for syntactic type equality in Lemma 16. We only state the syntactic inversion lemma for
the typing relation, because syntactic inversion for the kinding relation is trivial. Note that we
use syntactic inversion for kinding throughout the paper without indication. First we define some
convenient syntax used in the statement of the following lemma. We write ∃(a1, a2, . . . , an) for
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Γ Ok
Γ(x) = φ

Γ ` x : φ
Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : Πx : φ1.φ2

Γ ` t2 : φ1

Γ ` t1 : Πx : φ1.φ2

Γ ` t1 t2 : [t2/x]φ2

Γ, X : ∗l ` t : φ
Γ ` ΛX : ∗l.t : ∀X : ∗l.φ

Γ ` t : ∀X : ∗l.φ1

Γ ` φ2 : ∗l
Γ ` t[φ2] : [φ2/X]φ1

t1 ↓ t2 Γ ` t1 : φ
Γ Ok Γ ` t2 : φ
Γ ` join : t1 = t2

Γ ` t0 : t1 = t2
Γ ` t : [t1/x]φ
Γ ` t : [t2/x]φ

Figure 9 DSSF= Type-Assignment Rules

Γ ` p : t1 = t2

Γ ` [t1/x]φ ≈ [t2/x]φ
TEQ1

Γ ` [t1/x]φ ≈ [t1/x]φ′ Γ ` p : t1 = t2

Γ ` [t1/x]φ ≈ [t2/x]φ′
TEQ2

Figure 10 DSSF= Type Syntactic Equality

∃a1.∃a2 . . . ∃an. Note that the proofs of the following lemmas depend on a number of other auxiliary
lemmas. They can also be found in the companion report.

The first lemma is type syntactic conversion which states that if a term t inhabits a type φ then
it inhabits all types equivalent to φ. Following this is injectivity of Π-types which is needed in the
proof of syntactic inversion. Finally, we conclude syntactic inversion.

I Lemma 16 (Type Syntactic Conversion). If Γ ` t : φ and Γ ` φ ≈ φ′ then Γ ` t : φ′.

I Lemma 17 (Injectivity of Π-Types for Type Equality). If Γ ` Πy : φ1.φ2 ≈ Πy : φ′1.φ′2 then
Γ ` φ1 ≈ φ′1 and Γ, y : φ1 ` φ2 ≈ φ′2.

I Lemma 18 (Syntactic Inversion).
i. If Γ ` λx : φ1.t : φ then ∃φ2. Γ, x : φ1 ` t : φ2 ∧ Γ ` Πx : φ1.φ2 ≈ φ.

ii. If Γ ` t1 t2 : φ then ∃(x, φ1, φ2).
Γ ` t1 : Πx : φ1.φ2 ∧ Γ ` t2 : φ1 ∧ Γ ` φ ≈ [t2/x]φ2.

iii. If Γ ` ΛX : ∗l.t : φ then ∃φ′. Γ, X : ∗l ` t : φ′ ∧ Γ ` φ ≈ ∀X : ∗l.φ′.
iv. If Γ ` t[φ2] : φ then ∃(φ1, φ2).

Γ ` t : ∀X : ∗l.φ1 ∧ Γ ` φ2 : ∗l ∧ Γ ` φ ≈ [φ2/X]φ1.

v. If Γ ` join : φ then ∃(t1, t2, φ′).
t1 ↓ t2 ∧ Γ ` t1 : φ′ ∧ Γ ` t2 : φ′ ∧ Γ ` φ ≈ t1 = t2 ∧ Γ Ok.

3.2 The Ordering on Types and The Hereditary Substitution Function

The ordering on types is defined as follows:

I Definition 19. The ordering >Γ is defined as the least relation satisfying the universal closure
of the following formulas:

Πx : φ1.φ2 >Γ φ1

Πx : φ1.φ2 >Γ [t/x]φ2, where Γ ` t : φ1.
∀X : ∗l.φ >Γ [φ′/X]φ, where Γ ` φ′ : ∗l.



Harley Eades and Aaron Stump 11

[t/x]φx = t

[t/x]φy = y

Where y is a variable distinct from x.

[t/x]φjoin = join

[t/x]φ(λy : φ′.t′) = λy : φ′.([t/x]φt′)

[t/x]φ(ΛX : ∗l.t′) = ΛX : ∗l.([t/x]φt′)

[t/x]φ(t1 t2) = ([t/x]φt1) ([t/x]φt2)
Where ([t/x]φt1) is not a λ-abstraction, ([t/x]φt1) and t1 are λ-abstractions,
or ctypeφ(x, t1) is undefined.

[t/x]φ(t1 t2) = [([t/x]φt2)/y]φ
′′
s′1

Where ([t/x]φt1) ≡ λy : φ′′.s′1 for some y and s′1 and t1 is not a λ-abstraction, and
ctypeφ(x, t1) = Πy : φ′′.φ′.

[t/x]φ(t′[φ′]) = ([t/x]φt′)[φ′]
Where [t/x]φt′ is not a type abstraction or t′ and [t/x]φt′ are type abstractions.

[t/x]φ(t′[φ′]) = [φ′/X]s′1
Where [t/x]φt′ ≡ ΛX : ∗l.s′1, for some X , s′1 and Γ ` φ′ : ∗q , such that, q ≤ l and
t′ is not a type abstraction.

Figure 11 Hereditary Substitution Function for Stratified System F=

Just as we seen before this is the ordering used in the proofs of the properties of the hereditary
substitution function which will be defined next. As one might have expected this is a well-founded
ordering.

I Theorem 20 (Well-Founded Ordering). The ordering >Γ is well-founded on types φ such that
Γ ` φ : ∗l for some l.

The type-syntactic-equality relation respects this ordering.

I Lemma 21. If Γ ` φ′ ≈ φ′′ and φ >Γ φ
′ then φ >Γ φ

′′.

The following lemma is used in the proof of totality of the hereditary substitution function.

I Lemma 22. If Γ ` ψ ≈ Πy : φ1.φ2 and ψ is a subexpression of φ′′ then φ′′ >Γ φ1 and
φ′′ >Γ,y:φ1 φ2.

We now define the hereditary substitution function for DSSF=. The function is fully defined in
Fig. 11. We do not repeat the definition of ctypeφ for DSSF=, because it is exactly the same as the
previous system. The definition is rather straight forward. Due to space constraints and the fact that
all of the properties of the hereditary substitution function are so similar to the previous type theory
they can be found in the companion report.

3.3 Concluding Normalization

We are now ready to conlcude normalization. We will accomplish this by first defining the interpre-
tation of types, then proving the interpretation of types are closed under hereditary substitutions, and
finally proving type soundness. The interpretation of types are defined exactly the same way as they
were for SSF+. We do not repeat that definition here. Just as in the previous type system semantic
inversion must hold for the previous definition. This is implied by syntactic inversion, which we
proved in the previous section. The next two lemmas are used in the proof of the type soundness
theorem.
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t ::= x | λx.t | t t | join
v ::= λx.t | join | s
s ::= x | s v

φ ::= X | φ→ φ | φ = φ

Γ ::= · | Γ, x : φ | Γ, X

Figure 12 Syntax of Terms, Types, and Contexts for STLC=

E [(λx.t) v]  E [[v/x]t] where: E ::= ∗ | E t | v E

Figure 13 Call-By-Value Reduction Rules for STLC=

I Corollary 23 (Type Substitution for the Interpretation of Types). If n ∈ [[φ′]]Γ,X:∗l,Γ′ and
Γ ` φ : ∗l then [φ/X]n ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

I Lemma 24 (Semantic Equality). If Γ ` p : t1 = t2 then [[[t1/x]φ]]Γ = [[[t2/x]φ]]Γ.

We now conclude type soundness for SSF=, and hence, normalization.

I Lemma 25 (Hereditary Substitution for the Interpretation of Types). If n′ ∈ [[φ′]]Γ,x:φ,Γ′ ,
n ∈ [[φ]]Γ, then [n/x]φn′ ∈ [[[n/x]φ′]]Γ,[n/x]Γ′ .

I Theorem 26 (Type Soundness). If Γ ` t : φ then t ∈ [[φ]]Γ.

I Corollary 27 (Normalization). If Γ ` t : φ then t ! n.

4 Simply Typed λ-Calculus= (STLC=)

In the previous section we proved normalization for a system with equations between terms. We
now turn to a similar system, but instead of equations between terms we consider equations between
types. This feature is important for systems like Fω or the Calculus of Constructions (and its many
variants), where type-level computation and type-level redexes are allowed (see, e.g., [5]). While
type-level computation is often accommodated through an implicit conversion relation, if one wishes
to use explicit equational reasoning, then equalities between types are required.

The system we examine here is an extension of the Simply Typed λ-Calculus. We omit type
quantification to focus solely on equality types, but include type variables to allow formation of
non-trivial such equalities. The syntax for terms, types, and contexts is defined in Fig. 12. The kind-
assignment and type-assignment rules are defined in Fig. 14 and Fig. 15 respectively. This system
has a call-by-value (CBV) reduction strategy defined by the rules in Fig. 13. One of the main reasons
we use CBV instead of full β-reduction is that full β-reduction mixed with an inconsistent context
allows diverging terms to type check. Consider the following example.

I Example 28. The following term is a typeable diverging term of STLC= under full β-reduction:

λp.((λx.x x) (λx.x x))

We can assign this term the type (X = X → X) → X in the context consisting just of X . The
intuition is that if we assume that X equals X → X , we can then assign the variable x a type X ,
which we can then convert with Conv to X → X to type the self-application x .

We now move on to proving normalization using hereditary substitution.
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X ∈ Γ
Γ ` X

KVAR
Γ ` φ1 Γ ` φ2

Γ ` φ1 → φ2
KARROW

Γ ` φ1 Γ ` φ2

Γ ` φ1 = φ2
KEQ

Figure 14 STLC= Kinding Rules

Γ(x) = φ

Γ ` x : φ
VAR

Γ ` φ1 Γ, x : φ1 ` t : φ2

Γ ` λx.t : φ1 → φ2
LAM

Γ ` join : T = T
JOIN

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
APP

Γ ` t : [φ1/X]φ Γ ` t′ : φ1 = φ2

Γ ` t : [φ2/X]T
CONV

Figure 15 STLC= Type-Assignment Rules

4.1 The Hereditary Substitution Function and Its Propeties

The hereditary substitution function is defined in Fig. 16. It depends on the ctypeφ function, but we
do not redined it here. It is equivalent to the previous definitions when one removes the case for type
instantiation. We prove all the same properties of the hereditary substitution function as we did for
the two previouse systems. Due to their similiarity to the previous systems we do not show them
here. They can be found in the appendix of the companion report.

4.2 Concluding Normalization

Before concluding normalization we first define the interpretation of types.

I Definition 29. The interpretation of types [[φ]] is defined as follows:

x ∈ [[φ]]Γ ⇐⇒ ∃(φ′, p).(Γ ` p : φ = φ′ ∧ Γ(x) = φ′)
λx.t ∈ [[φ]]Γ ⇐⇒ Γ ` λx.t : φ ∧ ∃(φ1, φ2, p).(Γ ` p : φ = φ1 → φ2 ∧

(Con(Γ, x : φ1) =⇒ t ∈ [[φ2]]Γ,x:φ1))
join ∈ [[φ]]Γ ⇐⇒ Γ ` join : φ ∧ ∃(φ′, φ′′, p).(Γ ` p : φ = (φ′ = φ′′) ∧ ∀σ : Γ.σφ′ ≡ σφ′′).
s v ∈ [[φ]]Γ ⇐⇒ Γ ` s v : φ ∧ ∃φ′.(s ∈ [[φ′ → φ]]Γ ∧ v ∈ [[φ′]]Γ)

We define Con(Γ) to be Γ is consistent. The definition of the interpretatin of types are for CBV
normal forms. We extend this definition to non-normal terms in the following way, t ∈ [[φ]]Γ if

[t/x]φx = t

[t/x]φy = y

Where y is a variable distinct from x.

[t/x]φ(λy : φ′.t′) = λy : φ′.([t/x]φt′)

[t/x]φjoin = join

[t/x]φ(t1 t2) = ([t/x]φt1) ([t/x]φt2)
Where ([t/x]φt1) is not a λ-abstraction or ([t/x]φt1) and t1 are λ-abstractions, or
ctypeφ(x, t1) is undefined.

[t/x]φ(t1 t2) = [([t/x]φt2)/y]φ1s′1
Where ([t/x]φt1) ≡ λy : φ1.s

′
1 for some y and s′1 and t1 is not a λ-abstraction, and

ctypeφ(x, t1) = φ1 → φ2.

Figure 16 The Hereditary Substitution Function for STLC=
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and only if t  β v ∈ [[φ]]Γ. This definition is substantially different then the previous definitions.
First, this definition uses full β-reduction not CBV. We must use full β-reduction in the definition
of the interpretation of types, because we need them to be closed under hereditary substitution, but
hereditary substitution will reduce under λ-abstractions. Second, since we have equations between
types we cannot say that φ itself carries over to the right hand side of the definitions for variables, λ-
abstractions, and join, but rather there exist a proof p and a type φ′, such that p’s type is an equation
between φ and φ′.

One crucial point to make regarding the definition of the interpretation of types is that we only
know the body of a λ-abstraction is in an interpretation of some type if the context is consistent.
Since the reduction strategy is CBV the body of λ-abstractions can be anything even potentially
diveraging terms. Now in this system the only time we can type check a diverging term is if the
context is inconsistent, just as we saw in Example 28. Hence, we only know the body of a λ-
abstraction is in the interpretation of some type if the context is consistent. Without this requirement
on the bodies of λ-abstractions this proof will not work. Also, the clause for equality types quantifies
over substitutions which satisfy a context – σ : Γ – defined as follows:

· : ·
SUBEMPTY

` t : φ σ : Γ
({x 7→ t} ∪ σ) : (x : φ,Γ)

SUBTERM
` φ σ : [φ/X]Γ

({X 7→ φ} ∪ σ) : (X,Γ)
SUBTYPE

We now move on to showing soundness of typing. Similarly to the proof for DSSF= we need
semantic equality stated in the next lemma. Following the semantic equality lemma is the main
substitution lemma. One thing to note is that this lemma uses full β-reduction not CBV.

I Lemma 30 (Semantic Equality). If Γ ` p : φ1 = φ2 and v ∈ [[[φ1/X]φ]]Γ then v ∈
[[[φ2/X]φ]]Γ.

I Lemma 31 (Weakening for the Interpretation of Types). If v ∈ [[φ]]Γ then v ∈ [[φ]]Γ,Γ′ for
any context Γ′ which does not overlap with Γ.

I Lemma 32 (Hereditary Substitution for the Interpretation of Types). If v′ ∈ [[φ′]]Γ,x:φ,Γ′
and v ∈ [[φ]]Γ then [v/x]φv′ ∈ [[φ′]]Γ,Γ′ .

We now conclude soundness of typing and hence normalization for STLC=.

I Theorem 33 (Type Soundness). If Γ ` t : φ then t ∈ [[φ]]Γ.

I Corollary 34 (Normalization). If Γ ` t : φ and Con(Γ) then there exists a value v such that
t ! v.

5 Conclusion

We have applied the proof technique of normalization by hereditary substitution, which uses the
notion of interpretation of types and the central idea of hereditary substitution, to analyze three
advanced typing features: sum types with commuting conversions, equality types between terms,
and equality types between types. Our long-term goal is to apply the hereditary-substitutions method
to proof-theoretically more complex type theories, in particular Gödel’s System T. For this, we
conjecture that a proof-theoretically more complex ordering on types will be required, and hence are
exploring extensions of SSF to higher ordinals. A first step in this direction has already been taken
by Danner and Leivant, using the ordinal ωω [7].
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A Proofs of Results Pertaining to SSF+

A.1 Basic Syntactic Lemma for SSF+

We now state several results about the kinding relation all of which are used throughout the remaining
proofs for SSF+.

http://www.cs.uiowa.edu/~heades/
http://www.cs.uiowa.edu/~heades/


16 Exploring the Reach of Hereditary Substitution

I Lemma 35. If Γ ` φ : ∗p then Γ Ok.

I Lemma 36 (Level Weakening for Kinding). If Γ ` φ : ∗r and r < s then Γ ` φ : ∗s.

I Lemma 37 (Substitution for Kinding, Context-Ok). Suppose Γ ` φ′ : ∗p. If Γ, X : ∗p,Γ′ `
φ : ∗q with a derivation of depth d, then Γ, [φ′/X]Γ′ ` [φ′/X]φ : ∗q with a derivation of depth
d. Also, if Γ, X : ∗p,Γ′ Ok with a derivation of depth d, then Γ, [φ′/X]Γ′ Ok with a derivation of
depth d.

I Lemma 38 (Regularity). If Γ ` t : φ then Γ ` φ : ∗p for some p.

A.2 Proof of Theroem 2

The depth function, defined in the following definition, is used in the following proof.

I Definition 39. The depth of a type φ is defined as follows:

depth(X) = 1
depth(φ→ φ′) = depth(φ) + depth(φ′)
depth(φ+ φ′) = depth(φ) + depth(φ′)
depth(∀X : ∗l.φ) = depth(φ) + 1

We define the following metric (l, d) in lexicographic combination, where l is the level of a type
φ and d is the depth of φ.

I Lemma 40 (Well-Founded Measure). If φ >Γ φ′ then (l, d) > (l′, d′), where Γ ` φ : ∗l,
depth(φ) = d, Γ ` φ : ∗l′ , and depth(φ′) = d′.

Finally, the proof of well-foundedness of >Γ. If there exists an infinite decreasing sequence
using our ordering on types, then there is an infinite decreasing sequence using our measure by
Lemma 40, but that is impossible.

A.3 Proof of Lemma 3

Suppose φ >Γ φ
′ and φ′ >Γ φ

′′. If φ ≡ φ1 → φ2 or φ ≡ φ1 + φ2 then, φ′ must be a subexpression
of φ. Now if φ′ ≡ φ′1 → φ′2 or φ′ ≡ φ′1 + φ′2 then, φ′′ must be a subexpression of φ′, which implies
that φ′′ is a subexpression of φ. Thus, φ >Γ φ′′. If φ′ ≡ ∀X : ∗l.φ′1 then, there exists a type φ′2
where, Γ ` φ′2 : ∗l, such that, φ′′ ≡ [φ′2/X]φ′1. The level of φ′ is max(l, l′)+1, where l′ is the level
of φ′1, the level of φ′′ is max(l, l′), and the level of φ is max(max(l, l′) + 1, p), where p is the level
of the type, which is, the second subexpression of φ. Clearly, max(max(l, l′) + 1, p) ≥ max(l, l′),
thus, φ >Γ φ

′′.
If φ ≡ ∀X : ∗l.φ1, then φ′ ≡ [φ2/X]φ1 for some type φ2, where Γ ` φ2 : ∗l. If [φ2/X]φ1 ≡

φ′1 → φ′2 or [φ2/X]φ1 ≡ φ′1 +φ′2, then the level of φ′ is max(p, q), where p is the level of φ′1 and q
is the level of φ′2. Now φ′′ must be a subexpression of φ′, hence the level of φ′′ is either p or q. Now,
since the level of φ is greater than the level of φ′ and we know, max(p, q) is greater than both p and
q then φ >Γ φ′′. If [φ2/X]φ1 ≡ ∀Y : ∗l′ .φ′1, then φ′′ ≡ [φ′2/X]φ′1. Now if p is the level of φ1,
then the level of φ is max(l, p) + 1 and the level of φ′ must be max(l, p) since we know the level
of φ′ is greater than the level of φ′′ then clearly, the level of φ is greater than the level of φ′′. Thus,
φ >Γ φ

′′.
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A.4 Proof of Lemma 35

This is a proof by structural induction on the kinding derivation of Γ ` φ : ∗p.
Case.

Γ(X) = ∗p p ≤ q Γ Ok
Γ ` X : ∗q

By inversion of the kind-checking rule Γ Ok.
Case.

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 → φ2 : ∗max(p,q)

By the induction hypothesis, Γ ` φ1 : ∗p and Γ ` φ2 : ∗q both imply ΓOk. Since the arrow-type
kind-checking rule does not modify Γ in anyway Γ will remain Ok.

Case.

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 + φ2 : ∗max(p,q)

By the induction hypothesis, Γ ` φ1 : ∗p and Γ ` φ2 : ∗q both imply Γ Ok. Since the sum-type
kind-checking rule does not modify Γ in anyway Γ will remain Ok.

Case.

Γ, X : ∗q ` φ : ∗p
Γ ` ∀X : ∗q.φ : ∗max(p,q)+1

By the induction hypothesis Γ, X : ∗p Ok, and by inversion of the type-variable well-formed
contexts rule Γ Ok.

A.5 Proof of Lemma 36

We show level weakening for kinding by structural induction on the kinding derivation of φ : ∗r.
Case.

Γ(X) = ∗p p ≤ q Γ Ok
Γ ` X : ∗q

By assumption we know q < s, hence by reapplying the rule and transitivity we obtain Γ ` X :
∗s.

Case.

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 → φ2 : ∗max(p,q)

By the induction hypothesis Γ ` φ1 : ∗s and Γ ` φ2 : ∗s for some arbitrary s > max(p, q).
Therefore, by reapplying the rule we obtain Γ ` φ1 → φ2 : ∗s.

Case.

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 + φ2 : ∗max(p,q)

By the induction hypothesis Γ ` φ1 : ∗s and Γ ` φ2 : ∗s for some arbitrary s > max(p, q).
Therefore, by reapplying the rule we obtain Γ ` φ1 + φ2 : ∗s.
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Case.

Γ, X : ∗q ` φ′ : ∗p
Γ ` ∀X : ∗q.φ′ : ∗max(p,q)+1

We know by assumption that max(p, q) + 1 < s which implies that max(p, q) < s − 1. Now
by the induction hypothesis Γ, X : ∗q ` φ′ : ∗s−1. Lastly, we reapply the rule and obtain
Γ ` ∀X : ∗q.φ′ : ∗s.

A.6 Proof of Substitution for Kinding, Context-Ok

This is a prove by induction on d. We prove the first implication first, and then the second, doing a
case analysis for each implication on the form of the derivation whose depth is being considered.

Case.

(Γ, X : ∗p,Γ′)(Y ) = ∗r r ≤ s Γ, X : ∗p,Γ′ Ok
Γ, X : ∗p,Γ′ ` Y : ∗s

By assumption Γ ` φ′ : ∗p. We must consider whether or not X ≡ Y . If X ≡ Y then
[φ′/X]Y ≡ φ′, r = p, and q = s; this conclusion is equivalent to Γ, [φ′/X]Γ′ ` φ′ : ∗q and by
the induction hypothesis Γ, [φ′/X]Γ′ Ok. If X 6≡ Y then [φ′/X]Y ≡ Y and by the induction
hypothesis Γ, [φ′/X]Γ′ Ok, hence, Γ, [φ′/X]Γ′ ` Y : ∗q .

Case.

Γ, X : ∗p,Γ′ ` φ1 : ∗r Γ, X : ∗p,Γ′ ` φ2 : ∗s
Γ, X : ∗p,Γ′ ` φ1 → φ2 : ∗max(r,s)

Here q = max(r, s) and by the induction hypothesis Γ, [φ′/X]Γ′ ` [φ′/X]φ1 : ∗r and Γ, [φ′/X]Γ′ `
[φ′/X]φ2 : ∗s. We can now reapply the rule to get Γ, [φ′/X]Γ′ ` [φ′/X](φ1 → φ2) : ∗q .

Case.

Γ, X : ∗p,Γ′ ` φ1 : ∗r Γ, X : ∗p,Γ′ ` φ2 : ∗s
Γ, X : ∗p,Γ′ ` φ1 + φ2 : ∗max(r,s)

Here q = max(r, s) and by the induction hypothesis Γ, [φ′/X]Γ′ ` [φ′/X]φ1 : ∗r and Γ, [φ′/X]Γ′ `
[φ′/X]φ2 : ∗s. We can now reapply the rule to get Γ, [φ′/X]Γ′ ` [φ′/X](φ1 + φ2) : ∗q .

Case.

Γ, X : ∗q,Γ′, Y : ∗r ` φ : ∗s
Γ, X : ∗p,Γ′ ` ∀Y : ∗r.φ : ∗max(r,s)+1

Here q = max(r, s) + 1 and by the induction hypothesis Γ, [φ′/X]Γ′, Y : ∗r ` [φ′/X]φ : ∗s.
We can reapply this rule to get Γ, [φ′/X]Γ′ ` [φ′/X]∀Y : ∗r.φ : ∗q .

We now show the second implication. The case were d = 0 cannot arise, since it requires the context
to be empty. Suppose d = n+ 1. We do a case analysis on the last rule applied in the derivation of
Γ, X : ∗p,Γ′.

Case. Suppose Γ′ = Γ′′, Y : ∗q .
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Γ, X : ∗p,Γ′′ Ok
Γ, X : ∗p,Γ′′, Y : ∗q Ok

By the induction hypothesis, Γ, [φ′/X]Γ′′ Ok. Now, by reapplying the rule above Γ, [φ′/X]Γ′′, Y :
∗q Ok, hence Γ, [φ′/X]Γ′ Ok, since X 6≡ Y .

Case. Suppose Γ′ = Γ′′, y : φ.

Γ, X : ∗p,Γ′′ ` φ : ∗q Γ, X : ∗p,Γ′′ Ok
Γ, X : ∗p,Γ′′, y : φ Ok

By the induction hypothesis, Γ′, [φ′/X]Γ′′ ` [φ′/X]φ : ∗q and Γ′, [φ′/X]Γ′′ Ok. Thus, by
reapplying the rule above Γ, [φ′/X]Γ′′, x : [φ′/X]φ Ok, therefore,
Γ, [φ′/X]Γ′ Ok.

A.7 Proof of Type Ordering

This is a proof by case analysis on the kinding derivation of Γ ` φ : ∗p, with a case analysis on the
derivation of φ >Γ φ

′.

Case.

Γ(X) = ∗p p ≤ q Γ Ok
Γ ` X : ∗q

This case cannot arise, because we do not have X >Γ φ for any type φ.

Case.

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 → φ2 : ∗max(p,q)

By analysis of the derivation of the assumed ordering statement, we must have φ′ ≡ φ1 or
φ′ ≡ φ2. If φ′ ≡ φ1 and p ≥ q then we have the required kind derivation for φ′. If p < q then by
level weakening Γ ` φ1 : ∗q , and we have the required kinding derivation for φ′. The case for
when φ′ ≡ φ2 is similar.

Case.

Γ ` φ1 : ∗p Γ ` φ2 : ∗q
Γ ` φ1 + φ2 : ∗max(p,q)

By analysis of the derivation of the assumed ordering statement, we must have φ′ ≡ φ1 or
φ′ ≡ φ2. If φ′ ≡ φ1 and p ≥ q then we have the required kind derivation for φ′. If p < q then by
level weakening Γ ` φ1 : ∗q , and we have the required kinding derivation for φ′. The case for
when φ′ ≡ φ2 is similar.

Case.

Γ, X : ∗r ` φ : ∗s
Γ ` ∀X : ∗r.φ : ∗max(r,s)+1

By analysis of the derivation of the assumed ordering statement, we must have φ′ ≡ [φ′′/X]φ,
for some type φ′′ with Γ ` φ′′ : ∗r. Let t = max(r, s) + 1. Clearly, s < t, hence by level
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weakening Γ, X : ∗r ` φ : ∗t and by substitution for kinding Γ ` [φ′′/X]φ : ∗t, and we have
the required kinding derivation for φ′.

A.8 Proof of Lemma 44

Assume φ >Γ φ
′ for some types φ and φ′. We case split on the form of φ. Clearly, φ is not a type

variable.
Case. Suppose φ ≡ Πx : φ1.φ2. Then φ′ must be of the form φ1 or [t/x]φ2, for some term Γ ` t : φ1.

In both cases we have two cases to consider; either φ and φ′ have the same level or they do not.
Consider the first form and suppose they have the same level. Then it is clear that depth(φ) >
depth(φ′). Now consider the latter form and suppose φ and φ′ have the same level. Then clearly
depth(φ) > depth(φ′). In either form if the level of φ and φ′ are different, then the level of φ is
larger than the level of φ′. In all cases (l, d) > (l′, d′).

Case. Suppose φ ≡ ∀X : ∗l.φ1. Then φ′ must be of the form [φ2/X]φ1 for some type Γ ` φ2 : ∗l. It
is obvious that the level of φ is always larger than the level of φ′. Hence, (l, d) > (l′, d′).

A.9 Proof of Theorem 20

If there exists a infinite decreasing sequence using our ordering on types, then there is an infinite
decreasing sequence using our measure by Lemma 44, but that is impossible.

A.10 Proof of Regularity

This proof is by structural induction on the derivation of Γ ` t : φ.
Case.

Γ(x) = φ Γ Ok
Γ ` x : φ

By the definition of well-formedness contexts Γ ` φ : ∗p for some p.
Case.

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2

By the induction hypothesis Γ ` φ1 : ∗p, Γ, x : φ1 ` φ2 : ∗q and by Lemma ??, Γ ` φ2 : ∗q . By
applying the arrow-type kind-checking rule we get Γ ` φ1 → φ2 : ∗max(p,q).

Case.

Γ ` t : φ1 + φ2 Γ, x : φ1 ` t1 : ψ Γ, x : φ2 ` t2 : ψ
Γ ` case t of x.t1, x.t2 : ψ

By the induction hypothesis, Γ, x : φ1 ` ψ : ∗p, for some p. By Lemma ??, Γ ` ψ : ∗p.
Case.

Γ ` t : φ1 Γ ` φ2 : ∗p
Γ ` inl(t) : φ1 + φ2

By the induction hypothesis, Γ ` φ1 : ∗q , and by inversion of the type-checking rule above,
Γ ` φ2 : ∗p. Finally, by applying the sum-type kind-checking rule, Γ ` φ1 + φ2 : ∗max(q,p).

Case.
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Γ ` t : φ2 Γ ` φ1 : ∗p
Γ ` inr(t) : φ1 + φ2

Similar to the inject-left case above.
Case.

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
By the induction hypothesis Γ ` φ1 → φ2 : ∗r and Γ ` φ1 : ∗p. By inversion of the arrow-type
kind-checking rule r = max(p, q), for some q, which implies Γ ` φ2 : ∗q .

Case.

Γ, X : ∗p ` t : φ
Γ ` ΛX : ∗p.t : ∀X : ∗q.φ

By the induction hypothesis Γ, X : ∗q ` φ : ∗p. By applying the forall-type kind-checking rule
Γ ` ∀X.φ : ∗max(p,q)+1.

Case.

Γ ` t : ∀X : ∗p.φ1 Γ ` φ2 : ∗p
Γ ` t[φ2] : [φ2/X]φ1

By assumption Γ ` φ2 : ∗r. By the induction hypothesis Γ ` ∀X : ∗p.φ1 : ∗s and by
inversion of the forall-type kind-checking rule r = max(p, q) + 1, for some q, which implies
Γ, X : ∗p ` φ1 : ∗q . Now, by Lemma ??, Γ ` [φ2/X]φ1 : ∗q .

A.11 Proof of the Properties of ctypeφ
We prove part one first. This is a proof by induction on the structure of t.

Case. Suppose t ≡ x. Then ctypeφ(x, x) = φ. Clearly, head(x) = x and φ is a subexpression of
itself.

Case. Suppose t ≡ t1 t2. Then ctypeφ(x, t1 t2) = φ′′ when ctypeφ(x, t1) = φ′ → φ′′. Now t > t1
so by the induciton hypothesis head(t1) = x and φ′ → φ′′ is a subexpression of φ. Therefore,
head(t1 t2) = x and certainly φ′′ is a subexpression of φ.

We now prove part two. This is also a proof by induction on the structure of t.

Case. Suppose t ≡ x. Then ctypeφ(x, x) = φ. Clearly, φ ≡ φ.
Case. Suppose t ≡ t1 t2. Then ctypeφ(x, t1 t2) = φ2 when ctypeφ(x, t1) = φ1 → φ2. By inversion

on the assumed typing derivation we know there exists type φ′′ such that Γ, x : φ,Γ′ ` t1 :
φ′′ → φ′. Now t > t1 so by the induciton hypothesis φ1 → φ2 ≡ φ′′ → φ′. Therefore, φ1 ≡ φ′′
and φ2 ≡ φ′.

Next we prove part three. This is a proof by induction on the structure of t1 t2.

The only possiblities for the form of t1 is x or t̂1 t̂2. All other forms would not result in [t/x]φt1
being a λ-abstraction and t1 not. If t1 ≡ x then there exist a type φ′′ such that φ ≡ φ′′ → φ′ and
ctypeφ(x, x t2) = φ′ when ctypeφ(x, x) = φ ≡ φ′′ → φ′ in this case. We know φ′′ to exist by
inversion on Γ, x : φ,Γ′ ` t1 t2 : φ′.

Now suppose t1 ≡ (t̂1 t̂2). Now knowing t′1 to not be a λ-abstraction implies that t̂1 is also not
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a λ-abstraction or [t/x]φt1 would be an application instead of a λ-abstraction. So it must be the
case that [t/x]φt̂1 is a λ-abstraction and t̂1 is not. Since t1 t2 > t1 we can apply the induction
hypothesis to obtain there exists a type ψ such that ctypeφ(x, t̂1) = ψ. Now by inversion on Γ, x :
φ,Γ′ ` t1 t2 : φ′ we know there exists a type φ′′ such that Γ, x : φ,Γ′ ` t1 : φ′′ → φ′. We know
t1 ≡ (t̂1 t̂2) so by inversion on Γ, x : φ,Γ′ ` t1 : φ′′ → φ′ we know there exists a type ψ′′ such that
Γ, x : φ,Γ′ ` t̂1 : ψ′′ → (φ′′ → φ′). By part two of Lemma 4 we know ψ ≡ ψ′′ → (φ′′ → φ′) and
ctypeφ(x, t1) = ctypeφ(x, t̂1 t̂2) = φ′′ → φ′ when ctypeφ(x, t̂1) = ψ′′ → (φ′′ → φ′), because we
know ctypeφ(x, t̂1) = ψ.

The proofs of the remaining parts are similar to the proof of part three.

A.12 Proof of Totality and Type Preservation

This is a proof by induction on the lexicorgraphic combination (φ, t′) of >Γ,Γ′ and the strict subex-
pression ordering. We case split on t′.

Case. Suppose t′ is either x or a variable y distinct from x. Trivial in both cases.
Case. Suppose t′ ≡ λy : φ1.t

′
1. By inversion on the typing judgement we know Γ, x : φ,Γ′, y : φ1 `

t′1 : φ2. We also know t′ > t′1, hence we can apply the induction hypothesis to obtain [t/x]φt′1 =
t̂′1 and Γ,Γ′, y : φ1 ` t̂ : φ2 for some term t̂′1. By the definition of the hereditary substitution
function [t/x]φt′ = λy : φ1.[t/x]φt′1 = λy : φ1.t̂

′
1. It suffices to show that Γ,Γ′ ` λy : φ1.t̂

′
1 :

φ1 → φ2. By simply applying the λ-abstraction typing rule using Γ,Γ′, y : φ1 ` t̂ : φ2 we
obtain Γ,Γ′ ` λy : φ1.t̂

′
1 : φ1 → φ2.

Case. Suppose t′ ≡ ΛX : ∗l.t′1. Similar to the previous case.
Case. Suppose t′ ≡ t′1 t′2. By inversion we know Γ, x : φ,Γ′ ` t′1 : φ′′ → φ′ and Γ, x : φ,Γ′ ` t′2 : φ′′

for some types φ′ and φ′′. Clearly, t′ > t′i for i ∈ {1, 2}. Thus, by the induction hypothesis there
exists terms m1 and m2 such that [t/x]φt′i = mi, Γ,Γ′ ` m1 : φ′′ → φ′ and Γ,Γ′ ` m2 : φ′′ for
i ∈ {1, 2}. We case split on whether or not m1 is a λ-abstraction, a case construct and t′1 is not,
or ctypeφ(x, t′1) is undefined. We only consider the non-trivial cases when m1 ≡ λy : φ′′.m′1
and t′1 is not a λ-abstraction or m1 ≡ case m′0 of y.m′1,y.m′2, ctypeφ(x, t′1) = ψ′′ → ψ′, and t′1
is not a case construct. Suppose the former. Now by Lemma 4 it is the case that there exists a ψ
such that ctypeφ(x, t′1) = ψ, ψ ≡ φ′′ → φ′, and ψ is a subexpression of φ, hence φ >Γ,Γ′ φ

′′.
Then [t/x]φ(t′1 t′2) = [m2/y]ψ

′′
m′1. Therefore, by the induction hypothesis there exists a term

m such that [m2/y]φ
′′
m′1 = m and Γ,Γ′ ` m : φ′′.

Supposem1 ≡ casem′0 of y.m′1,y.m′2 and t′1 is not a case construct. Now [t/x]φt′ = casem′0 of y.appφm′1 m2,y.appφm′2 m2.
By inversion on Γ,Γ′ ` m1 : φ′′ → φ′ we know there exists terms φ1 and φ2 such that
Γ,Γ′ ` m′0 : φ1 + φ2 and Γ,Γ′, y : φi ` m′i : φ′′ → φ′ for i ∈ {1, 2}. It suffcies to
show that there exists terms q and q′ such that appφ m′1 m2 = q and appφ m′2 m2 = q′. To
obtain this result we prove the following proposition. Note that ctypeφ(x, t′1) = ψ′′ → ψ′

which by Lemma 4 is equivalent to φ′′ → φ′ and is a subexpression of φ, hence φ >Γ,Γ′ φ
′′ and

φ >Γ,Γ′ φ
′.

Proposition. For all Γ ` m2 : φ′′ and Γ ` m′1 : φ′′ → φ′ there exists a term q such that
appφ m

′
1 m2 = q and Γ ` q : φ′.

We prove this by nested induction on the ordering (φ, t′,m′1) and case splitting on the structure
of m′1.
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Case. Supposem′1 is neither a λ-abstraction or a case construct. Then appφ m′1 m2 = m′1 m2. Take
m′1 m2 for q and by applying the application typing rule we know Γ ` m′1 m2 : φ′.

Case. Suppose m′1 ≡ λz : φ′′.m′′1 . Then appφ m′1 m2 = [m2/z]φ
′′
m′′1 . By inversion on the

assumption Γ ` m′1 : φ′′ → φ′ we know Γ, z : φ′′ ` m′′1 : φ′. Since φ >Γ φ
′′ we can apply

the outter induction hypothesis to obtain there there exists a q such that [m2/z]φ
′′
m′′1 = q and

Γ ` q : φ′. Therefore, appφ m′1 m2 = q.
Case. Suppose m′1 ≡ case m′′0 of z.m′′1 ,z.m′′2 . Then

appφ m
′
1 m2 = case m′′0 of z.appφ m′′1 m2,z.appφ m′′2 m2. By inversion on the assumption

Γ ` m′1 : φ′′ → φ′ we know there exists types φ1 and φ2 such that Γ ` m′′0 : φ1 + φ2,
Γ, z : φ1 ` m′′1 : φ′′ → φ′ and Γ, z : φ2 ` m′′2 : φ′′ → φ′. Since m′1 > m′′1 and m′1 > m′′2
we can apply the inner induction hypothesis to obtain there exists terms q′ and q′′ such that
appφ m

′′
1 m2 = q′, Γ, z : φ1 ` q′ : φ′, appφ m′′1 m2 = q′′ and Γ, z : φ2 ` q′′ : φ′. Hence,

appφ m
′
1 m2 = casem′′0 of z.appφ m′′1 m2,z.appφ m′′2 m2 = casem′′0 of z.q′,z.q′′. It suffices

to to show that Γ ` case m′′0 of z.q′,z.q′′ : φ′. This is a simple consequence of applying the
case-construct typing rule using Γ ` m′′0 : φ1+φ2, Γ, z : φ1 ` q′ : φ′, and Γ, z : φ2 ` q′′ : φ′.

By the previous proposition there exists terms q and q′ such that
[t/x]φt′ = casem′0 of y.appφm′1 m2,y.appφm′2 m2 = casem′0 of y.q,y.q′, where appφm′1 m2 =
q, Γ,Γ′, y : φ1 ` q : φ′, appφ m′1 m2 = q′ and Γ,Γ′, y : φ2 ` q′ : φ′. It suffices to show
that Γ,Γ′ ` case m′0 of y.q,y.q′ : φ′. From above we know that Γ,Γ′ ` m′0 : φ1 + φ2,
Γ,Γ′, y : φ1 ` q : φ′ and Γ,Γ′, y : φ2 ` q′ : φ′. Thus, by applying the case-construct typing rule
we obtain Γ,Γ′ ` case m′0 of y.q,y.q′ : φ′.

Case. Suppose t′ ≡ t′1[φ′′]. Similar to the previous case.
Case. Suppose t′ ≡ inl(t). Trivial.
Case. Suppose t′ ≡ inr(t). Trivial.
Case. Suppose t′ ≡ case m0 of y.m1,y.m2. By inversion on the assumption Γ, x : φ,Γ′ ` t′ : φ′ we

know the following:
Γ, x : φ,Γ′ ` m0 : φ1 + φ2, for some types φ1 and φ2,

Γ, x : φ,Γ′, y : φ1 ` m1 : φ, and
Γ, x : φ,Γ′, y : φ2 ` m2 : φ.

It is easy to see that t′ > mi for all i ∈ {0, 1, 2}. Hence, by the induction hypothesis there exists
terms m′0, m′1, and m′2 such that [t/x]φmi = m′i for all i ∈ {0, 1, 2},

(i) Γ,Γ ` m′0 : φ1 + φ2,
(ii) Γ,Γ′, y : φ1 ` m′1 : φ′, and
(iii) Γ,Γ′, y : φ2 ` m′2 : φ′.

We have two cases to consider.
Case. Suppose m0 and m′0 are inject-left terms, inject-right terms, or case constructs, or m0 is an

inject-left term, inject-right term, or a case-construct and m′0 is not, or m0 and m′0 are neither
inject-left terms, inject-right terms, or case constructs, or ctypeφ(x,m0) is undefined. Then
[t/x]φ(case m0 of y.m1,y.m2) = case m′0 of y.m′1,y.m′2 and by applying the case-construct
typing rule to i - iii above we obtain Γ,Γ′ ` case m′0 of y.m′1,y.m′2 : φ′.

Case. Suppose m′0 is an inject-left term, inject-right term, or case construct and ctypeφ(x,m0) =
ψ1 + ψ2. Then
[t/x]φ(casem0 of y.m1,y.m2) = rcaseφ m

′
0 y m

′
1 m
′
2 and by Lemma 4 we know ψ1 +ψ2 ≡

φ1 + φ2 and is a subexpression of φ. It suffices to show that there exists some term q such
that rcaseφ m′0 y m

′
1 m

′
2 = q and Γ,Γ′ ` q : φ′. We obtain this result by the following

proposition.

Proposition. For all Γ ` q0 : φ, Γ, y : φ1 ` q1 : φ′, and Γ, y : φ2 ` q2 : φ′ there exists a
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term q̂ such that rcaseφ q0 y q1 q2 = q̂ and Γ ` q̂ : φ′. We prove this by induction on the the
ordering (φ, t′, q0) and case split on the structure of q0.

Case. Suppose q0 is not an inject-left term, inject-right term, or a case construct. Then
rcaseφ q0 y q1 q2 = case q0 of y.q1,y.q2 and by applying the case-construct typing rule
using the assumptions Γ ` q0 : φ, Γ, y : φ1 ` q1 : φ′, and Γ, y : φ2 ` q2 : φ′ we obtain
Γ,Γ′ ` case q0 of y.q1,y.q2 : φ′.

Case. Suppose q0 ≡ inl(q′0). Then rcaseφ q0 y q1 q2 = [q′0/y]φ1q1 and by inversion on Γ `
q0 : φ we know Γ ` q′0 : φ1. It suffices to show that there exists a term q̂ such that
[q′0/y]φ1q1 = q̂ and Γ ` q̂ : φ′. Since φ >Γ φ′ we can apply the the outer induction
hypothesis to obtain that there exists such a term q̂.

Case. Suppose q0 ≡ inl(q′0). Similar to the previous case.
Case. Suppose q0 ≡ case q′0 of z.q′1,z.q′2. Then

rcaseφ q0 y q1 q2 = case q′0 of z.(rcaseφ q′1 y q1 q2),z.(rcaseφ q′2 y q1 q2). We know by
assumption that Γ ` q0 : φ, Γ ` q0 : φ, and Γ, y : φ1 ` q1 : φ′ so by inversion we know
the following:

(i) Γ ` q′0 : φ′1 + φ′2, for some types φ′1 and φ′2,
(ii) Γ, z : φ′1 ` q′1 : φ, and
(iii) Γ, z : φ′2 ` q′2 : φ.

Now q0 > q′1 and q0 > q′1 so we can apply the induction hypothesis twice to obtain terms
q̂1 and q̂2 such that rcaseφ q′1 y q1 q2 = q̂1, rcaseφ q′1 y q1 q2 = q̂1, Γ, z : φ′1 ` q̂1 : φ′
and Γ, z : φ′2 ` q̂2 : φ′. So case q′0 of z.(rcaseφ q′1 y q1 q2),z.(rcaseφ q′2 y q1 q2) =
case q′0 of z.q̂1,z.q̂2. It suffices to show that case q′0 of z.q̂1,z.q̂2 = q̂ and Γ ` q̂ : φ
for some term q̂. Now q0 > q′0 so we can apply the induction hypothesis to obtain our
result, but before we can we must show that Γ ` case q′0 of z.q̂1,z.q̂2 : φ′. This is a direct
consequence of applying the case-construct typing rule using i, Γ, z : φ′1 ` q̂1 : φ′ and
Γ, z : φ′2 ` q̂2 : φ′. Therefore, by the induction hypothesis there exists a term q̂ such that
case q′0 of z.q̂1,z.q̂2 = q̂ and Γ ` q̂ : φ.

A.13 Proof of Redex Preservation

This is a proof by induction on the lexicorgraphic combination (φ, t′) of >Γ,Γ′ and the strict subex-
pression ordering. We case split on the structure of t′.

Case. Let t′ ≡ x or t′ ≡ y where y is distinct from x. Trivial.
Case. Let t′ ≡ λx : φ1.t

′′. Then [t/x]φt′ ≡ λx : φ1.[t/x]φt′′. Now
rset(λx : φ1.t

′′, t) = rset(λx : φ1.t
′′) ∪ rset(t)

= rset(t′′) ∪ rset(t)
= rset(t′′, t).

We know that t′ > t′′ by the strict subexpression ordering, hence by the induction hypothesis
|rset(t′′, t)| ≥ |rset([t/x]φt′′)| which implies |rset(t′, t)| ≥ |rset([t/x]φt′)|.

Case. Let t′ ≡ ΛX : ∗l.t′′. Similar to the previous case.
Case. Let t′ ≡ inl(t′′). We know rset(t′, t) = rset(t′′, t). Since t′ > t′′ we can apply the induction

hypothesis to obtain |rset(t′′, t)| ≥ |rset([t/x]φt′′)|. This implies |rset(t′, t)| ≥ |rset([t/x]φt′)|.
Case. Let t′ ≡ inr(t′′). Similar to the previous case.
Case. Let t′ ≡ t′1 t′2. First consider when t′1 is not a λ-abstraction or a case construct. Then

rset(t′1 t′2, t) = rset(t′1, t′2, t)
Clearly, t′ > t′i for i ∈ {1, 2}, hence, by the induction hypothesis |rset(t′i, t)| ≥ |rset([t/x]φt′i)|.
We have three cases to consider. That is whether or not [t/x]φt′1 is a λ-abstraction, a case con-
struct, or neither, or ctypeφ(x, t′1) is undefined. Suppose it is a λ-abstraction. Then by Lemma 4
ctypeφ(x.t′1) = ψ and by inversion on Γ, x : φ,Γ′ ` t′1 t′2 : φ′ there exists a type φ′′ such that
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Γ, x : φ,Γ′ ` t1 : φ′′ → φ′. Again, by Lemma 4 ψ ≡ φ′′ → φ′. Thus, ctypeφ(x, t′1) = φ′′ → φ′

and φ′′ → φ′ is a subexpression of φ. So by the definition of the hereditary substitution function
[t/x]φt′1 t′2 = [([t/x]φt′2)/y]φ

′′
t′′1 , where [t/x]φt′1 = λy : φ′′.t′′1 . Hence,

|rset([t/x]φt′1 t′2)| = |rset([([t/x]φt′2)/y]φ
′′
t′′1)|.

Now φ >Γ,Γ′ φ
′′ so by the induction hypothesis
|rset([([t/x]φt′2)/y]φ

′′
t′′1)| ≤ |rset([t/x]φt′2, t′′1)|

≤ |rset(t′2, t′′1 , t)|
= |rset(t′2, [t/x]φt′1, t)|
≤ |rset(t′2, t′1, t)|
= |rset(t′1, t′2, t)|.

Suppose [t/x]φt′1 = case t′′0 of y.t′′1 ,y.t′′2 . Then
|rset([t/x]φ(t′1 t′2))| = |rset(case t′′0 of y.(appφ t′′1 [t/x]φt′2),y.(appφ t′′2 [t/x]φt′2))|

= |rset(t′′0 , (appφ t′′1 [t/x]φt′2), (appφ t′′2 [t/x]φt′2))|.
We know t′ > t′1 and t′ > t′2 so by the induction hypothesis

|rset([t/x]φt′1)| = |rset(t′′0 , t′′1 , t′′2)|
≤ |rset(t′1, t)|

and
|rset([t/x]φt′2)| ≤ |rset(t′2, t)|.

By inversion on Γ, x : φ,Γ′ ` t1 t2 : φ′ there exists a type φ′′ such that Γ, x : φ,Γ′ ` t′1 : φ′′ →
φ′. So by Lemma 4, ctypeφ(x, t′1) = ψ, ψ ≡ φ′′ → φ′, and ψ is a subexpression of φ. Hence,
φ >Γ,Γ′ φ

′′ and φ >Γ,Γ′ φ
′. At this point we must show the following proposition.

Proposition. For all Γ ` t1 : φ′′ → φ′ and Γ ` t2 : φ′′ we have |rset(appφ t1 t2)| ≤
|rset(t1, t2)|.

We prove this by nested induction on the ordering (φ, t′, t1) and case split on the structure of t1.

Case. Suppose t1 is not a λ-abstraction or a case construct. Then appφ t1 t2 = t1 t2 and |rset(t1 t2)| =
|rset(t1, t2)|. Thus, |rset(appφ t1 t2)| ≤ |rset(t1, t2)|.

Case. Suppose t1 ≡ λy : φ′′.t′′1 . Then appφ t1 t2 = [t2/y]φ
′′
t′′1 . By inversion on the assumption

Γ ` t1 : φ′′ → φ′ we know Γ, y : φ′′ ` t′′1 : φ′. We know φ >Γ,Γ′ φ
′′ so by the outter

induction hypothesis
|rset([t2/y]φ

′′
t′′1)| ≤ |rset(t′′1 , t2)

= |rset(t1, t2).
Thus, |rset(appφ t1 t2) ≤ |rset(t1, t2)|.

Case. Suppose t1 ≡ case t′′0 of y.t′′1 ,y.t′′2 . Then
appφ t1 t2 = case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2.

By inversion on the assumption Γ ` t1 : φ′′ → φ′ we know Γ, y : φ′′1 ` t′′1 : φ′′ → φ′ and
Γ, y : φ′′2 ` t′′2 : φ′′ → φ′. Since t1 > t′′1 and t1 > t′′2 we can apply the induction hypothesis
to obtain

|rset(appφ t′′1 t2)| ≤ |rset(t′′1 , t2)|
and

|rset(appφ t′′2 t2)| ≤ |rset(t′′2 , t2)|.
Suppose t′′0 is not an inject-left or an inject-right term. Then

|rset(t1, t2)| = |rset(case t′′0 of y.t′′1 ,y.t′′2 , t2)|
= |rset(t′′0 , t′′1 , t′′2 , t2)|

and
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|rset(appφ t1 t2)| = |rset(case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2)|
= |rset(t′′0) ∪ rset(appφ t′′1 t2) ∪ rset(appφ t′′2 t2)|
≤ |rset(t′′0) ∪ rset(t′′1 , t2) ∪ rset(t′′2 , t2)|
= |rset(t′′0) ∪ rset(t′′1 , t′′2 , t2)|
= |rset(t′′0 , t′′1 , t′′2 , t2)|.

Therefore, |rset(appφ t1 t2)| ≤ |rset(t1, t2)|.

Now suppose t′′0 ≡ inl(t̂0). We only show the case when t′′0 is an inject-left term, because the
case when it is an inject-right term is similar. By definition we know

|rset(t1, t2)| = |rset(case t′′0 of y.t′′1 ,y.t′′2 , t2)|
= |{case t′′0 of y.t′′1 ,y.t′′2} ∪ rset(t′′0 , t′′1 , t′′2 , t2)|

and

|rset(appφ t1 t2)| = |rset(case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2)|
= |{case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2} ∪ rset(t′′0) ∪ rset(appφ t′′1 t2) ∪ rset(appφ t′′2 t2)|
≤ |{case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2} ∪ rset(t′′0) ∪ rset(t′′1 , t2) ∪ rset(t′′2 , t2)|
= |{case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2} ∪ rset(t′′0) ∪ rset(t′′1 , t′′2 , t2)|
= |{case t′′0 of y.appφ t′′1 t2,y.appφ t′′2 t2} ∪ rset(t′′0 , t′′1 , t′′2 , t2)|.

Therefore, |rset(appφ t1 t2)| ≤ |rset(t1, t2)|.

Suppose [t/x]φt′1 is not a λ-abstractions or a case construct, or ctypeφ(x, t′1) is undefined. Then
rset([t/x]φ(t′1 t′2)) = rset([t/x]φt′1 [t/x]φt′2)

= rset([t/x]φt′1, [t/x]φt′2).
≤ rset(t′1, t′2, t).

Next suppose t′1 ≡ λy : φ1.t
′′
1 . Then

rset((λy : φ1.t
′′
1) t′2, t) = {(λy : φ1.t

′′
1) t′2} ∪ rset(t′′1 , t′2, t).

By the definition of the hereditary substitution function,

rset([t/x]φ(λy : φ1.t
′′
1) t′2) = rset([t/x]φ(λy : φ1.t

′′
1) [t/x]φt′2)

= rset((λy : φ1.[t/x]φt′′1) [t/x]φt′2)
= {(λy : φ1.[t/x]φt′′1) [t/x]φt′2} ∪ rset([t/x]φt′′1) ∪ rset([t/x]φt′2).

Since t′ > t′′1 and t′ > t′2 we can apply the induction hypothesis to obtain, |rset(t′′1 , t)| ≥
|rset([t/x]φt′′1)| and |rset(t′2, t)| ≥ |rset([t/x]φt′2)|. Therefore,
|{(λy : φ1.t

′′
1) t′2} ∪ rset(t′′1 , t)∪ rset(t′2, t)| ≥ |{(λy : φ1.[t/x]φt′′1) [t/x]φt′2} ∪ rset([t/x]φt′′1)∪

rset([t/x]φt′2)|.

Finally, suppose t′1 ≡ case t′′0 of y.t′′1 ,y.t′′2 . Then
|rset([t/x]φ(t′1 t′2))| = |rset((case [t/x]φt′′0 of y.[t/x]φt′′1 ,y.[t/x]φt′′2) [t/x]φt′2)|

= |{[t/x]φ(t′1 t′2)} ∪ rset([t/x]φt′′0 , [t/x]φt′′1 , [t/x]φt′′2 , [t/x]φt′2)|.
Now t′ > t′′0 , t′ > t′′1 , t′ > t′′2 , and t′ > t′2 so by the induction hypothesis

|rset([t/x]φt′′0 | ≤ |rset(t′′0 , t)|,
|rset([t/x]φt′′1 | ≤ |rset(t′′1 , t)|,
|rset([t/x]φt′′2 | ≤ |rset(t′′2 , t)|, and
|rset([t/x]φt′2| ≤ |rset(t′2, t)|.

Hence,
|rset([t/x]φt′′0 , [t/x]φt′′1 , [t/x]φt′′2 , [t/x]φt′2)| ≤ |rset(t′′0 , t′′1 , t′′2 , t′2, t)|.

Now
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|rset(t′1 t′2, t)| = |rset((case t′′0 of y.t′′1 ,y.t′′2) t′2, t)|
= |{t′1 t′2} ∪ rset(t′′0 , t′′1 , t′′2 , t′2, t)|.

Therefore, |rset([t/x]φ(t′1 t′2))| ≤ |rset(t′1 t′2, t)|.
Case. Let t′ ≡ case t′0 of y.t′1,y.t′2. Suppose t′0 is not an inject-left term, and inject-right term, or a

case-construct. First we know
|rset(t′, t)| = |rset(t′0, t′1, t′2, t)|.

Now we have several cases to consider, when [t/x]φt′0 is an inject-left term, an inject-right term,
a case construct, something else entirely, or ctypeφ(x, t′0) is undefined. Suppose it is something
else entirely or ctypeφ(x, t′0) is undefined. Then

|rset([t/x]φt′)| = |rset(case [t/x]φt′0 of y.([t/x]φt′1),y.([t/x]φt′2))|
= |rset([t/x]φt′0, ([t/x]φt′1), ([t/x]φt′2))|.

We can see that t′ > t′0, t′ > t′1, t′ > t′2 so by the induction hyothesis
|rset([t/x]φt′0| ≤ |rset(t′0, t)|,
|rset([t/x]φt′1| ≤ |rset(t′1, t)|, and
|rset([t/x]φt′2| ≤ |rset(t′2, t)|.

This implies that |rset([t/x]φt′0, ([t/x]φt′1), ([t/x]φt′2))| ≤ |rset(t′0, t′1, t′2, t)|. Therefore, |rset(t′, t)| ≥
|rset([t/x]φt′).

Now suppose [t/x]φt′0 ≡ inl(t′′0). We only show the case for when [t/x]φt′0 is an inject-left
term, because the case for when it is an inject-right term is similar. We can see that

|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|
= |rset(t′0, t′1, t′2, t)|

and |rset([t/x]φt′)| = |rset([t′′0/y]φ1([t/x]φt′1))|. By inversion on Γ, x : φ,Γ′ ` t′ : φ′ we
know there exists types φ1 and φ2 such that Γ, x : φ,Γ′ ` t0 : φ1 + φ2. So by Lemma 4 there
exists a type ψ such that ctypeφ(x, t′0) = ψ, ψ ≡ φ1 + φ2, and ψ is a subexpression of φ. Thus,
φ >Γ,Γ′ φ1, φ >Γ,Γ′ φ2, t > t′0, and t > t′1 so we can apply the induction hypothesis to obtain

|rset([t′′0/y]φ1([t/x]φt′1))| ≤ |rset(t′′0 , [t/x]φt′1)|
= |rset([t/x]φt′0, [t/x]φt′1)|
≤ |rset(t′0, t′1, t)|
≤ |rset(t′0, t′1, t′2, t)|.

Next suppose [t/x]φt′0 ≡ case t′′0 of y.t′′1 ,y.t′′2 . Then
|rset([t/x]φt′)| = |rset(rcaseφ [t/x]φt′0 y [t/x]φt′1 [t/x]φt′2)|

and
|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|

= |rset(t′0, t1, t′2, t)|.
Note that by inverision on Γ, x : φ,Γ′ ` t′ : φ′ we know there exists types φ1 and φ2 such that
Γ, x : φ,Γ′ ` t′0 : φ1 + φ2. So by Lemma 4 there exists a type ψ such that ctypeφ(x, t′0) = ψ,
ψ ≡ φ1 + φ2, and ψ is a subexpression of φ. Thus, φ >Γ,Γ′ φ1 and φ >Γ,Γ′ φ2. It suffices
to show that |rset(rcaseφ [t/x]φt′0 [t/x]φt′1 [t/x]φt′2)| ≤ |rset([t/x]φt′0, [t/x]φt′1, [t/x]φt′2)|
which is a consequence of the following proposition.

Proposition. For all Γ ` t : φ1 + φ2, Γ, y : φ1 ` t′1 : φ′, and Γ, y : φ2 ` t′2 : φ′ we have
|rset(rcaseφ t y t′1 t′2)| ≤ |rset(t, t′1, t′2)|.

We prove this proposition by nested induction on (φ, t′, t) and we case split on t.
Case. Suppose t ≡ inl(t′). Then

rset(rcaseφ t y t′1 t′2) = rset([t′/y]φ1t′1).
By inversion on Γ ` t : φ1 + φ2 we know Γ ` t′ : φ1. So by the outer induction hypothesis
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|rset([t′/y]φ1t′1)| ≤ |rset(t′1, t′)|
= |rset(t, t′1)|
≤ |rset(t, t′1, t′2)|.

Therefore, |rset(rcaseφ t y t′1 t′2)| ≤ |rset(t, t′1, t′2)|.
Case. Suppose t ≡ inr(t′). This case is similar to the previous case.
Case. Suppose t ≡ case t0 of z.t1,z.t2. Then

rcaseφ t y t′1 t
′
2 = case t0 of z.(rcaseφ t1 y t′1 t

′
2),z.(rcaseφ t2 y t′1 t

′
2).

Now t > t′i for i ∈ {0, 1, 2}. Before we can apply the inductive hypothesis we must show
that t1 and t2 are typeable. By inversion on the assumption Γ ` t : φ1 + φ2 we know
Γ, z : φ′1 ` t1 : φ1 + φ2 and Γ, z : φ′2 ` t2 : φ1 + φ2. So by the inner induction hypothesis
|rset(rcaseφ ti y t′1 t

′
2)| ≤ |rset(ti, t′1, t′2)|.

We have two cases to consider either t0 is not an inject-left term or an inject-right term, or it
is. If not then

rset(rcaseφ t y t′1 t
′
2) = rset(t0, rcaseφ t1 y t′2 t

′
2, rcaseφ t2 y t′2 t

′
2)

otherwise
rset(rcaseφ t y t′1 t

′
2)

= {rcaseφ t y t′1 t
′
2} ∪ rset(t0, rcaseφ t1 y t′1 t

′
2, rcaseφ t2 y t′1 t

′
2).

Suppose t0 is not an inject-left or an inject-right term. Then
|rset(t, t′1, t′2)| = |rset(t0, t1, t2, t′1, t′2)|.

Now we know
|rset(t0, rcaseφ t1 y t′2 t

′
2, rcaseφ t2 y t′2 t

′
2)|

= |rset(t0) ∪ rset(rcaseφ t1 y t′2 t
′
2) ∪ rset(rcaseφ t2 y t′2 t

′
2)|

≤ |rset(t0) ∪ rset(t1, t′2, t′2) ∪ rset(t1, t′2, t′2)|
= |rset(t0, t1, t2, t′2, t′2)|.

Therefore, |rset(rcaseφ t y t′1 t
′
2)| ≤ |rset(t, t′1, t′2)|.

Now suppose t0 ≡ inl(t′0). Then
|rset(t, t′1, t′2)| = |{t} ∪ rset(t0, t1, t2, t′1, t′2)|.

It suffices to show that
|{rcaseφ t y t′1 t

′
2} ∪ rset(t0, rcaseφ t1 y t′1 t

′
2, rcaseφ t2 y t′1 t

′
2)|

≤ |{t} ∪ rset(t0, t1, t2, t′1, t′2)|.
Let A = rcaseφ t1 y t′1 t

′
2 and B = rcaseφ t2 y t′1 t

′
2. Since |rset(rcaseφ ti y t′1 t

′
2)| ≤

|rset(ti, t′1, t′2)| we obtain the following:
|{rcaseφ t y t′1 t

′
2} ∪ rset(t0, A,B)|

= |{rcaseφ t y t′1 t
′
2}|+ |rset(t0)|+ |rset(A)|+ |rset(B)|

≤ |{rcaseφ t y t′1 t
′
2}|+ |rset(t0)|+ |rset(t1, t′1, t′2)|+ |rset(t2, t′1, t′2)|

= |{rcaseφ t y t′1 t
′
2}|+ |rset(t0, t1, t2, t′1, t′2)|

= |{t} ∪ rset(t0, t1, t2, t′1, t′2)|.
The case when t0 is an inject-right term is similar to the case when it is an inject-left term.

Now by the previous proposition we know
|rset(rcaseφ [t/x]φt′0 [t/x]φt′1 [t/x]φt′2)| ≤ |rset([t/x]φt′0, [t/x]φt′1, [t/x]φt′2)|,

becuase by Lemma 5 t′0, t′1, and t′2 have the same types as [t/x]φt′0, [t/x]φt′1, and [t/x]φt′2. Now
t′ > t′0, t′ > t′1, and t′ > t′2, so

|rset([t/x]φt′0)| ≤ |rset(t′0, t),
|rset([t/x]φt′1)| ≤ |rset(t′1, t), and
|rset([t/x]φt′2)| ≤ |rset(t′2, t).

Thus,
|rset([t/x]φt′0, [t/x]φt′1, [t/x]φt′2)| ≤ |rset(t′0, t′1, t′2, t)|

= |rset(t′, t)|.
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Suppose t′0 ≡ inl(t′′0). Again, we only show the case for when t′0 is an inject-left term. We know
|rset([t/x]φt′)| = |rset(case [t/x]φt′0 of y.[t/x]φt′1,y.[t/x]φt′2)|

= |rset(case inl([t/x]φt′′0) of y.[t/x]φt′1,y.[t/x]φt′2)|
= |{[t/x]φt′} ∪ rset([t/x]φt′′0 , [t/x]φt′1, [t/x]φt′2)|

and
|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|

= |rset(case inl(t′′0) of y.t′1,y.t′2, t)|
= |{t′} ∪ rset(t′′0 , t′1, t′2)|.

Now t′ > t′′0 , t′ > t′1, and t′ > t′2 so by the induction hypothesis
|rset([t/x]φt′′0)| ≤ |rset(t′′0 , t)|
|rset([t/x]φt′1)| ≤ |rset(t′1, t)|
|rset([t/x]φt′2)| ≤ |rset(t′2, t)|.

Therefore, |rset([t/x]φt′′0 , [t/x]φt′1, [t/x]φt′2)| ≤ |rset(t′′0 , t′1, t′2, t)|which implies that |rset([t/x]φt′)| ≤
|rset(t′, t)|.

Finally, suppose t′0 ≡ case t′′0 of z.t′′1 ,z.t′′2 . Then

|rset([t/x]φt′)| = |rset(case [t/x]φt′0 of y.[t/x]φt′1,y.[t/x]φt′2)|
= |rset(case case [t/x]φt′′0 of z.[t/x]φt′′0 t′′1 ,z.[t/x]φt′′0 t′′2 of y.[t/x]φt′1,y.[t/x]φt′2)|
= |{[t/x]φt′} ∪ rset([t/x]φt′0, [t/x]φt′1, [t/x]φt′2)|

and
|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|

= |rset(case case t′′0 of z.t′′1 ,z.t′′2 of y.t′1,y.t′2, t)|
= |{t′} ∪ rset(t′0, t′1, t′2)|.

Now t′ > t′′0 , t′ > t′1, and t′ > t′2 so by the induction hypothesis
|rset([t/x]φt′0)| ≤ |rset(t′0, t)|,
|rset([t/x]φt′1)| ≤ |rset(t′1, t)|, and
|rset([t/x]φt′2)| ≤ |rset(t′2, t)|.

Therefore, |rset([t/x]φt′′0 , [t/x]φt′1, [t/x]φt′2)| ≤ |rset(t′′0 , t′1, t′2, t)|which implies that |rset([t/x]φt′)| ≤
|rset(t′, t)|.

A.14 Proof of Normality Preservation

By Lemma 5 we know there exists a term n′′ such that [n/x]φn′ = t and by Lemma 8 |rset(n′, n)| ≥
|rset([n/x]φn′)|. Hence, |rset(n′, n)| ≥ |rset(t)|, but |rset(n′, n)| = 0. Therefore, |rset(t)| = 0
which implies n′′ has no redexes. It suffices to show that n′′ has no structural redexes. We prove this
by induction on the lexicographic ordering (φ, n′). We case split on the structure of n′.

Case. Suppose n′ is a variable x or y distinct from x. Trivial in both cases.
Case. Suppose n′ ≡ λy : φ′′.n̂′. Then [n/x]φn′ = λy : φ′′.[t/x]φn̂′. By inversion on the assumption

Γ, x : φ′ ` n′ : φ′ we know Γ, x : φ′,Γ′, y : φ′′ ` n̂′ : φ′. Since n′ > n̂ we can apply
the induction hypothesis to obtain there exists a term t′ such that [t/x]φn̂ = t′ and t′ has no
structural redexes. Therefore, neither does λy : φ′′.[t/x]φn̂′.

Case. Suppose n′ ≡ ΛX : ∗l.n̂. Similar to the previous case.
Case. Suppose n′ ≡ inl(n′0). Similar to the λ-abstraction case.
Case. Suppose n′ ≡ n′1 n

′
2. By inversion we know Γ, x : φ,Γ′ ` n′1 : φ′′ → φ′ and Γ, x : φ,Γ′ ` n′2 :

φ′′ for some types φ′ and φ′′. Clearly, n′ > n′i for i ∈ {1, 2}. Thus, by the induction hypothesis
there exists normal terms m1 and m2 such that [n/x]φn′i = mi such that mi have no structural
redexes. We case split on whether or not m1 is a λ-abstraction or a case construct and n′1 is not,
or ctypeφ(x, n′1) is undefined. We only consider the non-trivial cases when m1 ≡ λy : φ′′.m′1
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or m1 ≡ case m′0 of y.m′1,y.m′2 and n′1 is not a λ-abstraction or a case construct. Suppose the
former. Now by Lemma 4 there exists a type ψ such that ctypeφ(x, n′1) = ψ, ψ ≡ φ′′ → φ′,
and ψ is a subexpression of φ, hence φ >Γ,Γ′ φ

′′. So [n/x]φ(n′1 n′2) = [m2/y]φ
′′
m′1 and by the

induction hypothesis there exists a term m such that [m2/y]φ
′′
m′1 = m and m has no structural

redexes..

Suppose m1 ≡ case m′0 of y.m′1,y.m′2. By inversion on Γ,Γ′ ` m1 : φ′′ → φ′ we know there
exists terms φ1 and φ2 such that Γ,Γ′ ` m′0 : φ1 + φ2 and Γ,Γ′, y : φi ` m′i : φ′′ → φ′

for i ∈ {1, 2}. Note that by Lemma 4 there exists a type ψ such that ctypeφ(x, n′1) = ψ,
ψ ≡ φ′′ → φ′, and ψ is a subexpression of φ, hence φ >Γ,Γ′ φ

′ and φ >Γ,Γ′ φ
′′. Now

[t/x]φt′ = case m′0 of y.appφ m′1 m2,y.appφ m′2 m2. It suffcies to show that there exists terms
q and q′ such that appφ m′1 m2 = q, appφ m′2 m2 = q′ and q and q′ have no structural redexes.
To obtain this result we prove the following proposition.

Proposition. For all normal terms m2 and m′1 such that Γ ` m2 : φ′′ and Γ ` m′1 : φ′′ → φ′

there exists a term q such that appφ m′1 m2 = q and q has no structural redexes.

We prove this by nested induction on the ordering (φ, n′,m′1) and case splitting on the structure
of m′1.

Case. Supposem′1 is neither a λ-abstraction or a case construct. Then appφ m′1 m2 = m′1 m2. Take
m′1 m2 for q and we know q has no structural redexes, because m′1 and m2 are normal.

Case. Suppose m′1 ≡ λz : φ′′.m′′1 . Then appφ m′1 m2 = [m2/z]φ
′′
m′′1 . By inversion on the

assumption Γ ` m′1 : φ′′ → φ′ we know Γ, z : φ′′ ` m′′1 : φ′. Since φ >Γ φ
′′ we can apply

the outter induction hypothesis to obtain there there exists a q such that [m2/z]φ
′′
m′′1 = q and

q has no structural redexes.

Case. Suppose m′1 ≡ case m′′0 of z.m′′1 ,z.m′′2 . Then
appφ m

′
1 m2 = case m′′0 of z.appφ m′′1 m2,z.appφ m′′2 m2. By inversion on the assumption

Γ ` m′1 : φ′′ → φ′ we know there exists types φ1 and φ2 such that Γ ` m′′0 : φ1 + φ2,
Γ, z : φ1 ` m′′1 : φ′′ → φ′ and Γ, z : φ2 ` m′′2 : φ′′ → φ′. Since m′1 > m′′1 and
m′1 > m′′2 we can apply the inner induction hypothesis to obtain there exists terms q′ and q′′

such that appφ m′′1 m2 = q′, q′ has no structural redexes, appφ m′′1 m2 = q′′ and q′′ has
no structural redexes. Hence, appφ m′1 m2 = case m′′0 of z.appφ m′′1 m2,z.appφ m′′2 m2 =
case m′′0 of z.q′,z.q′′ and case m′′0 of z.q′,z.q′′ has no structural redexes. Note that m′′0 is
normal, because m′1 is normal.

By the previous proposition there exists terms q and q′ such that
[n/x]φn′ = casem′0 of y.appφm′1 m2,y.appφm′2 m2 = casem′0 of y.q,y.q′, where appφm′1 m2 =
q, appφ m′1 m2 = q′, and q and q′ have no structural redexes. Thus, case m′0 of y.q,y.q′ has no
structural redexes.

Case. Suppose n′ ≡ case m0 of y.m1,y.m2. By inversion on the assumption Γ, x : φ,Γ′ ` n′ : φ′ we
know the following:

Γ, x : φ,Γ′ ` m0 : φ1 + φ2, for some types φ1 and φ2,

Γ, x : φ,Γ′, y : φ1 ` m1 : φ, and
Γ, x : φ,Γ′, y : φ2 ` m2 : φ.

It is easy to see that n′ > mi for all i ∈ {0, 1, 2}. Hence, by the induction hypothesis there
exists terms m′0, m′1, and m′2 such that [t/x]φmi = m′i and m′i have no structural redexes for all
i ∈ {0, 1, 2}. We have two cases to consider.
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Case. Suppose m′0 is not an inject-left term, inject-right term, or case construct, or m0 is an inject-
left term, an inject-right term, or a case construct, or ctypeφ(x,m0) is undefined. Then
[n/x]φ(case m0 of y.m1,y.m2) = case m′0 of y.m′1,y.m′2 which has no structural redexes.

Case. Suppose m′0 is an inject-left term, inject-right term, or case construct and m0 is not an inject-
left term, an inject-right term, or a case construct. Then
[n/x]φ(case m0 of y.m1,y.m2) = rcaseφ m

′
0 y m

′
1 m

′
2, where by Lemma 4 there exists a

type ψ such that ctypeφ(x,m0) = ψ, ψ ≡ φ1 + φ2, and ψ is a subexpression of φ, hence
φ >Γ,Γ′ φ1 and φ >Γ,Γ′ φ2. Consider the case when m′0 ≡ inl(m′′0). Then we know by
the definition of rcase that rcaseφ m′0 y m

′
1 m

′
2 = [m′′0/y]φ1m′1. Clearly, φ >Γ,Γ′ φ1

hence by the the induction hypothesis there exists a term r such that [m′′0/y]φ1m′1 = r

and r has no structural redexes. Similarly for when m′0 ≡ inr(m′′0). So suppose m′0 ≡
case m′′0 of z.m′′1 ,z.m′′2 then it suffices to show that there exists some term q such that
rcaseφ m

′
0 y m

′
1 m

′
2 = q and q has no structural redexes. We obtain this result by the

following proposition.

Proposition. For all normal terms q and q1 such that Γ ` q0 : φ, Γ, y : φ1 ` q1 : φ′, and
Γ, y : φ2 ` q2 : φ′ there exists a term q̂ such that rcaseφ q0 y q1 q2 = q̂ and q̂ has no
structural redexes. We prove this by induction on the the ordering (φ, n′, q0) and case split on
the structure of q0.

Case. Suppose q0 is not an inject-left term, inject-right term, or a case construct. Then
rcaseφ q0 y q1 q2 = case q0 of y.q1,y.q2 which has no structural redexes.

Case. Suppose q0 ≡ inl(q′0). Then rcaseφ q0 y q1 q2 = [q′0/y]φ1q1 and by inversion on Γ `
q0 : φ we know Γ ` q′0 : φ1. It suffices to show that there exists a term q̂ such that
[q′0/y]φ1q1 = q̂ and q̂ has no structural redexes. Clearly, φ >Γ φ

′ so by the outer induction
hypothesis there exists such a term q̂.

Case. Suppose q0 ≡ inl(q′0). Similar to the previous case.
Case. Suppose q0 ≡ case q′0 of z.q′1,z.q′2. Then

rcaseφ q0 y q1 q2 = case q′0 of z.(rcaseφ q′1 y q1 q2),z.(rcaseφ q′2 y q1 q2). We know by
assumption that Γ ` q0 : φ, Γ ` q0 : φ, and Γ, y : φ1 ` q1 : φ′ so by inversion we know
the following:

(i) Γ ` q′0 : φ′1 + φ′2, for some types φ′1 and φ′2,
(ii) Γ, z : φ′1 ` q′1 : φ, and
(iii) Γ, z : φ′2 ` q′2 : φ.

Now q0 > q′1 and q0 > q′1 so we can apply the inner induction hypothesis twice to obtain
terms q̂1 and q̂2 such that rcaseφ q′1 y q1 q2 = q̂1, rcaseφ q′1 y q1 q2 = q̂1 where q̂1 and q̂2
have no structural redexes. So case q′0 of z.(rcaseφ q′1 y q1 q2),z.(rcaseφ q′2 y q1 q2) =
case q′0 of z.q̂1,z.q̂2. It suffices to show that case q′0 of z.q̂1,z.q̂2 = q̂ for some normal
term q̂. Now q0 > q′0 so we can apply the induction hypothesis to obtain our result,
but before we can we must show that Γ ` case q′0 of z.q̂1,z.q̂2 : φ′. This is a direct
consequence of applying the case-construct typing rule using i, Γ, z : φ′1 ` q̂1 : φ′ and
Γ, z : φ′2 ` q̂2 : φ′. Therefore, by the inner induction hypothesis there exists a term q̂ such
that case q′0 of z.q̂1,z.q̂2 = q̂ and q̂ is has no structural redexes.

Case. Suppose n′ ≡ n′1[φ′′]. Since n′ > n′1 we can apply the induction hypothesis to obtain [n′/x]φn′1
has no structural redexes. We case split on whether or not [n′/x]φn′1 is a type abstraction and n′1
is not. The case where it is not is trivial so we only consider the case where [n′/x]φn′1 ≡ ΛX :
∗l.s′ for some normal term s′. Then [n′/x]φn′ = [φ′/X]s′ has no structural redexes, because s′

is normal.
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A.15 Proof of Soundness with Respect to Reduction

This is a proof by induction on the lexicorgraphic combination (φ, t′) of>Γ and the strict subexpres-
sion ordering. We case split on the structure of t′. When applying the induction hypothesis we must
show that the input terms to the substitution and the hereditary substitution functions are typeable.
We do not explicitly state typing results that are simple conseqences of inversion.

Case. Suppose t′ is a variable x or y distinct from x. Trivial in both cases.
Case. Suppose t′ ≡ λy : φ′.t̂. Then [t/x]φ(λy : φ′.t̂) = λy : φ′.([t/x]φt̂). Now t′ > t̂ so we can

apply the induction hypothesis to obtain [t/x]t̂  ∗ [t/x]φt̂. At this point we can see that since
λy : φ′.[t/x]t̂ ≡ [t/x](λy : φ′.t̂) and we may conclude that λy : φ′.[t/x]t̂ ∗ λy : φ′.[t/x]φt̂.

Case. Suppose t′ ≡ ΛX : ∗l.t̂. Similar to the previous case.
Case. Suppose t′ ≡ inl(t′0). Then [t/x]φt′ = inl([t/x]φt′0). We can see that t′ > t′0 so by the

induction hypothesis [t/x]t′0  ∗ [t/x]φt′0. Hence, inl([t/x]t′0) ∗ inl([t/x]φt′0) which implies
that [t/x](inl(t′0)) ∗ [t/x]φ(inl(t′0)).

Case. Suppose t′ ≡ inr(t′0). Similar to the previous case.
Case. Suppose t′ ≡ case t′0 of y.t′1,y.t′2. Clearly, t′ > t′0, t′ > t′1, and t′ > t′2, so we can apply

the induction hypothesis to conclude [t/x]t′0  ∗ [t/x]φt′0, [t/x]t′1 ↓ [t/x]φt′1, and [t/x]t′2  ∗
[t/x]φt′2. We have several cases to consider, either when [t/x]φt′0 is an inject-left term or an
inject-right term and t′0 is not, when [t/x]φt′0 is a case construct and t′0 is not, or [t/x]φt′0 is
not an inject-left term, an inject-right term, or a case construct, or ctypeφ(x, t′0) is undefined.
The cases when [t/x]φt′0 is not an inject-left term, an inject-right term, or a case construct, or
ctypeφ(x, t′0) is undefined are trivial.

Let’s consider the case when [t/x]φt′0 is an inject-left term or an inject-right term and t′0 is not.
Since the case when [t/x]φt′0 is an inject-left term is similar to the case when it is an inject-
right term we only consider the former. Suppose [t/x]φt′0 = inl(t′′0) and t′0 is not an inject-left
term. By Lemma 4 there exists a type ψ such that ctypeφ(x, t′0) = ψ, ψ ≡ φ1 + φ2, and ψ
is a subexpression of φ, where by inversion on Γ, x : φ,Γ′ ` t′ : φ′ there exists types φ1 and
φ2 such that Γ, x : φ,Γ′ ` t′0 : φ1 + φ2. Thus, φ >Γ,Γ′ φ1 and φ >Γ,Γ′ φ2. So [t/x]φt′ =
[t′′0/y]φ1([t/x]φt′1) and we know from above that [t/x]t′1  ∗ [t/x]φt′1. Now φ >Γ,Γ′ φ1, so by
the induction hypothesis, [t′′0/y]([t/x]φt′1)  ∗ [t′′0/y]φ1([t/x]φt′1). Thus, [t′′0/y]([t/x]t′1)  ∗
[t′′0/y]φ1([t/x]φt′1). It suffices to show [t/x]t′  ∗ [t′′0/y]([t/x]t′1). We can see that

[t/x]t′ = [t/x](case x of y.t′1,y.t′2)
≡ case [t/x]x of y.[t/x]t′1,y.[t/x]t′2
≡ case inl(t′′0) of y.[t/x]t′1,y.[t/x]t′2
 [t′′0/y]([t/x]t′1).

Suppose [t/x]t′0 = case t′′0 of z.t′′1 ,z.t′′2 and t′0 is not. It suffices to show that [t/x]t ∗ [t/x]φt′,
which is equivalent to showing [t/x](case t′0 of y.t′1,y.t′2) ∗ [t/x]φ(case t′0 of y.t′1,y.t′2). Now

[t/x]φ(case t′0 of y.t′1,y.t′2) = case t′′0 of z.(rcaseφ t′′1 y t
′
1 t
′
2),z.(rcaseφ t′′1 y t

′
1 t
′
2)

and
[t/x](case t′0 of y.t′1,y.t′2) = case [t/x]t′0 of y.[t/x]t′1,y.[t/x]t′2

 ∗ case (case t′′0 of z.t′′1 ,z.t′′2) of y.[t/x]t′1,y.[t/x]t′2
 case t′′0 of z.(case t′′1 of y.t′1,y.t′2),z.(case t′′2 of y.t′1,y.t′2),

because we know from above that [t/x]t′0  ∗ [t/x]φt′0. So it suffices to show that (case t′′1 of y.t′1,y.t′2) ∗
(rcaseφ t′′1 y t

′
1 t
′
2) and (case t′′2 of y.t′1,y.t′2)  ∗ (rcaseφ t′′2 y t

′
1 t
′
2), because we know from

above that [t/x]ti  ∗ [t/x]φt′i. This is a consequence of the following proposition. First note
that again by Lemma 4 there exists a type ψ such that ctypeφ(x, t′0) = ψ, ψ ≡ φ1 + φ2, and ψ
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is a subexpression of φ, where by inversion on the assumption Γ, x : φ,Γ′ ` t′ : φ′ there exists
types φ1 and φ2 such that Γ, x : φ,Γ′ ` t′0 : φ1 + φ2. Hence, φ >Γ,Γ′ φ1 and φ >Γ,Γ′ φ2.

Proposition. For all Γ ` t0 : φ1 + φ2, Γ, y : φ1 ` t1 : φ′′ and Γ, y : φ2 ` t2 : φ′′ we have
(case t0 of y.t1,y.t2) ∗ (rcaseφ t0 y t1 t2).

We prove this by nested induction on the ordering (φ, t′, t0) and case splitting on the structure of
t0.

Case. Suppose t0 is not an inject-left term, an inject-right term, or a case construct. Then
rcaseφ t0 y t1 t2 = case t0 of y.t1,y.t2.

Case. Suppose t0 ≡ inl(t′0). Then
rcaseφ t0 y t1 t2 = [t′0/y]φ1t1

and
case t0 of y.t1,y.t2 ≡ case inl(t′0) of y.t1,y.t2

 [t′0/y]t1.
Now φ >Γ φ1 so by the outer-induction hypothesis [t′0/y]t1  ∗ [t′0/y]φ1t1. Therefore,
(case t0 of y.t1,y.t2) ∗ (rcaseφ t0 y t1 t2).

Case. Suppose t0 ≡ inl(t′0). Similar to the previous case.
Case. Suppose t0 ≡ case t′0 of z.t′1,z.t′2. Then

rcaseφ t0 y t1 t2 = case t′0 of z.(rcaseφ t′1 y t1 t2),z.(rcaseφ t′2 y t1 t2)
and

case t0 of y.t1,y.t2 ≡ case (case t′0 of z.t′1,z.t′2) of y.t1,y.t2
 case t′0 of z.(case t′1 of y.t1,y.t2),z.(case t′2 of y.t1,y.t2).

Trivially, t0 > t′1 and t0 > t′2 so by the inner-induction hypothesis (case t′1 of y.t1,y.t2)  ∗
(rcaseφ t′1 y t1 t2) and (case t′2 of y.t1,y.t2) ∗ (rcaseφ t′2 y t1 t2). Therefore,
(case t0 of y.t1,y.t2) ∗ (rcaseφ t0 y t1 t2).

Case. Suppose t′ ≡ t′1 t
′
2. By Lemma 5 there exists terms t̂′1 and t̂′2 such that [t/x]φt′1 = t̂′1 and

[t/x]φt′2 = t̂′2. Since t′ > t′1 and t′ > t′2 we can apply the induction hypothesis to obtain
[t/x]t′1  ∗ t̂′1 and [t/x]t′2  ∗ t̂′2. Now we case split on whether or not t̂′1 is a λ-abstraction
and t′1 is not, t̂′1 is a case construct and t′1 is not, ctypeφ(x, t′1) is undefined, or t̂′1 is neither a
λ-abstraction or a case construct. If ctypeφ(x, t′1) is undefined or t̂′1 is neither a λ-abstraction
or a case construct then [t/x]φt′ = ([t/x]φt′1) ([t/x]φt′2) ≡ t̂′1 t̂

′
2. Thus, [t/x]t′  ∗ [t/x]φt′,

because [t/x]t′ = ([t/x]t′1) ([t/x]t′2). So suppose t̂′1 ≡ λy : φ′.t̂′′1 and t′1 is not a λ-abstraction.
By Lemma 4 there exists a type ψ such that ctypeφ(x, t′1) = ψ, ψ ≡ φ′′ → φ′, and ψ is a
subexpression of φ, where by inversion on Γ, x : φ,Γ′ ` t′ : φ′ there exists a type φ′′ such
that Γ, x : φ,Γ′ ` t′1 : φ′′ → φ′. Then by the definiton of the hereditary substitution function
[t/x]φ(t′1 t′2) = [t̂′2/y]φ

′
t̂′′1 . Now we know φ >Γ,Γ′ φ

′ so we can apply the induction hypothesis
to obtain [t̂′2/y]t̂′′1  ∗ [t̂′2/y]φ

′
t̂′′1 . Now by knowing that (λy : φ′.t̂′′1) t′2  [t̂′2/y]t̂′′1 and by the

previous fact we know (λy : φ′.t̂′′1) t′2  ∗ [t̂′2/y]φ
′
t̂′′1 . We now make use of the well known

result of full β-reduction. The result is stated as
a ∗ a′

b ∗ b′ a′ b′  ∗ c

a b ∗ c

where a, a′, b, b′, and c are all terms. We apply this result by instantiating a, a′, b, b′, and c with
[t/x]t′1, t̂′1, [t/x]t′2, t̂′2, and [t̂′2/y]φ

′
t̂′′1 respectively. Therefore, [t/x](t′1 t′2) ∗ [t̂′2/y]φ

′
t̂′′1 .

Finally, suppose t̂′1 ≡ case t0 of y.t1,y.t2 and t′0 is not a case construct. By Lemma 4 there
exists a type ψ such that ctypeφ(x, t′1) = ψ, ψ ≡ φ′′ → φ′ and ψ is a subexpression of φ,
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where by inversion on the assumption Γ, x : φ,Γ′ ` t′ : φ′ there exists a type φ′′ such that
Γ, x : φ,Γ′ ` t′1 : φ′′ → φ′. Now

[t/x]φ(t′1 t′2) = case t0 of y.(appφ t1 ([t/x]φt′2)),y.(appφ t1 ([t/x]φt′2))
and

[t/x](t′1 t′2) = ([t/x]t′1)([t/x]t′2).
Clearly, t′ > t′1 and t′ > t′2, so by the induction hypothesis [t/x]t′1  ∗ [t/x]φt′1 and [t/x]t′2  ∗
[t/x]φt′2. Thus,

([t/x]t′1) ([t/x]t′2)  ∗ (case t0 of y.t1,y.t2) ([t/x]t′2)
 case t0 of y.(appφ t1([t/x]t′2)),y.(appφ t2([t/x]t′2))

and
((case t0 of y.(appφ t1 ([t/x]t′2)),y.(appφ t1 ([t/x]t′2)))) ∗
(case t0 of y.(appφ t1 ([t/x]φt′2)),y.(appφ t1 ([t/x]φt′2))).

It suffices to show that (t1 ([t/x]t′2)) ∗ (appφ t1 ([t/x]t′2)) and (t2 ([t/x]t′2)) ∗ (appφ t2 ([t/x]t′2)).
This is a consequence of the following proposition:

Proposition. For all Γ ` t1 : φ1 → φ2 and Γ ` t2 : φ1 we have (t1 t2) ∗ (appφ t1 t2).

We prove this by nested induction on the ordering (φ, t′, t1) and case split on the structure of t1.
Case. Suppose t1 is not a λ-abstraction or a case construct. Then appφ t1 t2 = t1 t2.
Case. Suppose t1 ≡ λy : φ1.t

′′
1 . Then appφ t1 t2 = [t2/y]φ1t′′1 . Clearly, φ >Γ φ1 so by the

outer-induction hypothesis [t2/y]t′′1  ∗ [t2/y]φ1t′′1 . Therefore, (t1 t2) ∗ (appφ t1 t2).
Case. Suppose t1 ≡ case t′0 of y.t′1,y.t′2. Then

appφ t1 t2 = case t′0 of y.(appφ t′1 t2),y.(appφ t′2 t2)
and

(t1 t2) = (case t′0 of y.t′1,y.t′2) t2
 case t′0 of y.(t′1 t2),y.(t′2 t2).

We can see that t1 > t′1 and t1 > t′2 so by the inner-induction hypothesis, (t′1 t2)  ∗
(appφ t′1 t2) and (t′2 t2) ∗ (appφ t′2 t2). Therefore,

(case t′0 of y.(t′1 t2),y.(t′2 t2)) ∗ (case t′0 of y.(appφ t′1 t2),y.(appφ t′2 t2)),
which implies (t1 t2) ∗ (appφ t1 t2).

Case. Suppose t′ ≡ t′1[φ′′]. Since t′ > t′1 we can apply the induction hypothesis to obtain [t/x]t′1  ∗
[t′/x]φt′1. We case split on whether or not [t′/x]φt′1 is a type abstraction and t′1 is not. The
case where it is not is trivial so we only consider the case where [t′/x]φt′1 ≡ ΛX : ∗l.s′. Then
[t′/x]φt′ = [φ′/X]s′. Now we have [t/x]t′1  ∗ [t′/x]φt′1 and [t/x](t′1[φ]) ≡ ([t/x]t′1)[φ]  ∗
([t′/x]φt′1)[φ] [φ/X]s′. Thus, [t/x]t′  ∗ [t′/x]φt′.

A.16 Proof of Lemma 12

This proof is by structural induction on n.
Case. n is a variable y. Clearly, [φ/X]n ≡ [φ/X]y = y ∈ [[φ′]]Γ,X:∗l,Γ′ , and

(Γ, [φ/X]Γ′)(y) = [φ/X]φ′. Also, we have Γ, [φ/X]Γ′ ` [φ/X]φ′ : ∗p for some p, by
Lemma 37. Hence, by the definition of the interpretation of types, y ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

Case. Let n ≡ λy : ψ.n′. By the definition of the interpretation of types φ′ ≡ ψ → ψ′. By the induc-
tion hypothesis [φ/X]n′ ∈ [[[φ/X]ψ′]]Γ,Γ′,y:[φ/X]ψ . Again by the definition of the interpretation
of types λy : [φ/X]ψ.[φ/X]n′ ≡ [φ/X](λy : ψ.n′) ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

Case. Let n ≡ n1n2. By the definition of the interpretation of types φ′ ≡ ψ, n1 ∈ [[ψ′ → ψ]]Γ,X:∗q,Γ′ ,
and n2 ∈ [[ψ′]]Γ,X:∗q,Γ′ . By the induction hypothesis [φ/X]n1 ∈ [[[φ/X](ψ′ → ψ)]]Γ,[φ/X]Γ′

and [φ/X]n2 ∈ [[[φ/X]ψ′]]Γ,[φ/X]Γ′ . Now by the definition of the interpretation of types
([φ/X]n1)([φ/X]n2) ∈ [[[φ/X]ψ]]Γ,[φ/X]Γ′ , since [φ/X]n1, cannot be a λ-abstraction.
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Case. Let n ≡ ΛY : ∗q.n′. By the definition of the interpretation of types φ′ = ∀Y : ∗q.ψ and
n′ ∈ [[ψ]]Γ,X:∗l,Γ′,Y :∗q . By the induction hypothesis
[φ/X]n′ ∈ [[[φ/X]ψ]]Γ,[φ/X]Γ′,Y :∗q and by the definition of the interpretation of types ΛY :
∗q.[φ/X]n′ ∈ [[∀Y : ∗q.[φ/X]ψ]]Γ,[φ/X]Γ′ which is equivalent to [φ/X](ΛY : ∗q.n′) ∈ [[[φ/X](∀Y :
∗q.ψ)]]Γ,[φ/X]Γ′ .

Case. Let n ≡ n′[ψ]. By the definition of the interpretation of types φ′ = [ψ/Y ]ψ′, for some Y , ψ,
and there exists a q such that Γ, X : ∗l,Γ′ ` ψ : ∗q , and n′ ∈ [[∀Y : ∗q.ψ′]]Γ,X:∗l,Γ′ . By the
induction hypothesis [φ/X]n′ ∈ [[[φ/X](∀Y : ∗q.ψ′)]]Γ,[φ/X]Γ′ . Therefore, by the definition of
the interpretation of types
([φ/X]n′)[ψ] ∈ [[[ψ/Y ]([φ/X]ψ′)]]Γ,[φ/X]Γ′ , which is equivalent to
[φ/X](n′[ψ]) ∈ [[[φ/X]([ψ/Y ]ψ′)]]Γ,[φ/X]Γ′ .

Case. Let n ≡ inl(n′). By the definition of the interpretation of types, φ′ ≡ φ′1 + φ′2, for some types
φ′1 and φ′2, and n′ ∈ [[φ′1]]Γ,X:∗l,Γ′ . By the induction hypothesis, [φ/X]n′ ∈ [[[φ/X]φ′1]]Γ,[φ/X]Γ′ .
Thus, by the definition of the interpretation of types, inl([φ/X]n′) ≡ [φ/X]inl(n′) ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

Case. Let n ≡ inr(n′). Similar to the inject-left case above.
Case. Let n ≡ case n0 of y.n1,y.n2. By the definition of the interpretation of types, n0 ∈ [[φ′1 +

φ′2]]Γ,X:φ,Γ′ , for some types φ′1 and φ′2, n1 ∈ [[φ′]]Γ,X:φ,Γ′,y:φ′1 , and n2 ∈ [[φ′]]Γ,X:φ,Γ′,y:φ′2 . By
the induction hypothesis, [φ/X]n0 ∈ [[[φ/X](φ′1+φ′2)]]Γ,[φ/X]Γ′ , [φ/X]n1 ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′,y:[φ/X]φ′1 ,
and
[φ/X]n2 ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′,y:[φ/X]φ′2 . Finally, by the definition of the interpretation of types,
case [φ/X]n0 of y.[φ/X]n1, y.[φ/X]n2 ≡
[φ/X](case n0 of y.n1,y.n2) ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

A.17 Proof of Type Soundness

This is a proof by induction on the structure of the typing derivation of t.

Case.

Γ(x) = φ Γ Ok
Γ ` x : φ

By regularity Γ ` φ : ∗l for some l, hence [[φ]]Γ is nonempty. Clearly, x ∈ [[φ]]Γ by the definition
of the interpretation of types.

Case.

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : φ1 → φ2
By the induction hypothesis t ∈ [[φ2]]Γ,x:φ1 and by the definition of the interpretation of types
t  ! n ∈ [[φ2]]Γ,x:φ1 and Γ, x : φ1 ` n : φ2. Thus, by applying the λ-abstraction type-
checking rule, Γ ` λx : φ1.n : Πx : φ1.φ2 so by the definition of the interpretation of types
λx : φ1.n ∈ [[φ1 → φ2]]Γ. Thus, according to the definition of the interpretation of types
λx : φ1.t ! λx : φ1.n ∈ [[φ1 → φ2]]Γ.

Case.

Γ ` t1 : φ2 → φ1 Γ ` t2 : φ2

Γ ` t1 t2 : φ1
By the induction hypothesis t1  ! n1 ∈ [[φ2 → φ1]]Γ, t2  ! n2 ∈ [[φ2]]Γ, Γ ` φ2 → φ1 : ∗p,
and Γ ` φ2 : ∗q . Inversion on the arrow-type kind-checking rule yields, Γ ` φ1 : ∗r, and by
Lemma ??, Γ, x : φ2,Γ′ ` φ1 : ∗r.
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Now we know from above that n1 ∈ [[φ2 → φ1]]Γ and n2 ∈ [[φ2]]Γ, hence Γ ` n1 : φ2 → φ1
and Γ ` n2 : φ2. It suffices to show that n1 n2 ∈ [[φ2]]Γ. Clearly, n1 n2 = [n1/z](z n2) for
some variable z 6∈ FV (n1, n2). Lemma 5, Lemma 10, and Lemma 9 allow us to conclude that
[n1/z](z n2)  ∗ [n1/z]φ2→φ1(z n2), Γ ` [n1/z]φ2→φ1(z n2) : φ2, and [n1/z]φ2→φ1(z n2) is
normal. Thus, t1 t2  ∗ n1 n2 = [n1/z](z n2) ! [n1/z]φ2→φ1(z n2) ∈ [[φ2]]Γ.

Case.

Γ, X : ∗p ` t : φ
Γ ` ΛX : ∗p.t : ∀X : ∗p.φ

By the induction hypothesis and definition of the interpretation of types t ∈ [[φ]]Γ,X:∗p , t  !

n ∈ [[φ]]Γ,X:∗p and ΛX : ∗p.n ∈ [[φ]]Γ. Again, by definition of the interpretation of types
ΛX : ∗p.t ! ΛX : ∗p.n ∈ [[φ]]Γ.

Case.

Γ ` t : ∀X : ∗l.φ1 Γ ` φ2 : ∗l
Γ ` t[φ2] : [φ2/X]φ1

By the induction hypothesis t ∈ [[∀X : ∗l.φ1]]Γ and by the definition of the interpretation of types
we know t ! n ∈ [[∀X : ∗l.φ1]]Γ. We case split on whether or not n is a type abstraction. If not
then again, by the definition of the interpretation of types n[φ2] ∈ [[[φ2/X]φ1]]Γ, therefore t ∈
[[[φ2/X]φ1]]Γ. Suppose n ≡ ΛX : ∗l.n′. Then t[φ2] ∗ (ΛX : ∗l.n′)[φ2] [φ2/X]n′. By the
definition of the interpretation of types n′ ∈ [[φ1]]Γ,X:∗l . Therefore, by Lemma 12 [φ2/X]n′ ∈
[[[φ2/X]φ1]]Γ.

Case.

Γ ` t : φ1 Γ ` φ2 : ∗p
Γ ` inl(t) : φ1 + φ2

By the induction hypothesis, t ∈ [[φ1]]Γ and by the definition of the interpretation of types,
t ! n ∈ [[φ1]]Γ, and inl(n) ∈ [[φ1 +φ2]]Γ. Again, by the definition of the interpretation of types
inl(t) ! inl(n) ∈ [[φ1 + φ2]]Γ.

Case.

Γ ` t : φ2 Γ ` φ1 : ∗p
Γ ` inr(t) : φ1 + φ2

Similar the inject-left case above.
Case.

Γ ` t0 : φ1 + φ2 Γ, x : φ1 ` t1 : ψ Γ, x : φ2 ` t2 : ψ
Γ ` case t0 of x.t1,x.t2 : ψ

By the induction hypothesis and the definition of the interpretation of types t0  ! n0 ∈ [[φ1 +
φ2]]Γ and Γ ` n0 : φ1 + φ2, t1  ! n1 ∈ [[ψ]]Γ,x:φ1 and Γ, x : φ1 ` n1 : ψ, and t2  ! n2 ∈
[[ψ]]Γ,x:φ2 and Γ, x : φ2 ` n2 : ψ. Clearly,

case t0 of x.t1,x.t2  ∗ case n0 of x.n1,x.n2
= [n0/z](case z of x.n1,x.n2),

for some variable z 6∈ FV (n0, n1, n2) ∪ {x}. Lemma 5, Lemma 10, and Lemma 9 allow
us to conclude that [n0/z](case z of x.n1,x.n2)  ∗ [n0/z]φ1+φ2(case z of x.n1,x.n2), Γ `
[n0/z]φ1+φ2(case z of x.n1,x.n2) : ψ, and [n0/z]φ1+φ2(case z of x.n1,x.n2) is normal. Thus,
[n0/z]φ1+φ2(case z of x.n1,x.n2) ∈ [[ψ]]Γ and we obtain case t0 of x.t1,x.t2 ∈ [[ψ]]Γ.
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B Proofs of Results Pertaining to DSSF=

B.1 Miscellaneous Definitions and Results

This section contains definitions and lemmas that were omitted from the main part of the paper due
to space constraints. First are a few basic syntactic lemmas.

I Lemma 41 (Type Equality Context Conversion). If Γ, x : [φ1/X]φ,Γ′ ` t : φ′ and Γ ` p :
φ1 = φ2 then Γ, x : [φ2/X]φ,Γ′ ` t : φ′.

Proof. This hold by straightforward induction on the assumed typing derivation. J

I Lemma 42 (Syntactic Inversion).
i. If Γ ` λx : φ1.t : φ1 → φ2 then Γ, x : φ1 ` t : φ2.

ii. If Γ ` t1 t2 : φ2 then there exists a type φ1, such that, Γ ` t1 : φ1 → φ2 and Γ ` t2 : φ1.
The depth function, defined in the following definition, is used in the proof of Lemma 44 and is used
to show that our ordering on types is well founded.

I Definition 43. The depth of a type φ is defined as follows:

depth(t) = 0, where t is any term.
depth(X) = 1
depth(Πx : φ.φ′) = depth(φ) + depth(φ′)
depth(∀X : ∗l.φ) = depth(φ) + 1

We use the metric (l, d) in lexicographic combination, where l is the level of a type φ, and d is the
depth of φ in the proof of the next lemma.

I Lemma 44 (Well-Founded Measure). If φ >Γ φ′ then (l, d) > (l′, d′), where Γ ` φ : ∗l,
depth(φ) = d, Γ ` φ : ∗l′ , and depth(φ′) = d′.

The next few lemmas are results about the kinding and typing relations as well as well-formed
contexts. The first lemma states that every kindable type is kindable within a well-formed environ-
ment.

I Lemma 45. If Γ ` φ : ∗p then Γ Ok.

The Type Substitution for the Interpretation of Types lemma is needed in the proof of the Type
Substitution for Kinding, Typing, Context-Ok lemma, which is needed in the proof of the main
substitution lemma.

I Lemma 46 (Type Substitution for Kinding, Typing, and Context-Ok). Suppose Γ ` φ′ : ∗p.
Then
i. if Γ, X : ∗p,Γ′ ` φ : ∗q with a derivation of depth d, then Γ, [φ′/X]Γ′ ` [φ′/X]φ : ∗q with a

derivation of depth d,
ii. if Γ, X : ∗l,Γ′ ` t : φ with a derivation of depth d, then Γ, [φ′/X]Γ′ ` [φ′/X]t : [φ′/X]φ with

a derivation of depth d, and
iii. if Γ, X : ∗p,Γ′ Ok with a derivation of depth d, then Γ, [φ′/X]Γ′ Ok with a derivation of depth

d.

Next we show that the kinding and typing relations are closed under term substitutions.

I Lemma 47 (Term Substitution for Kinding, Typing, and Context-Ok). Suppose Γ ` t′ : φ′.
Then
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i. if Γ, x : φ′,Γ′ ` φ : ∗l with a derivation of depth d, then Γ, [t′/x]Γ′ ` [t′/x]φ : ∗l with a
derivation of depth d,

ii. if Γ, x : φ′,Γ′ ` t : φ with a derivation of depth d, then Γ, [t′/x]Γ′ ` [t′/x]t : [t′/x]φ with a
derivation of depth d, and

iii. if Γ, x : φ′,Γ′ Ok with a derivation of depth d, then Γ, [t′/x]Γ′ Ok with a derivation of depth d.

Context weakening for the kinding and typing relations is defined by Lemma 48, and is used by the
proof of the main substitution lemma.

I Lemma 48 (Context Weakening for Kinding and Typing). Assume Γ,Γ′′,Γ′ Ok, Γ,Γ′ ` φ :
∗p and Γ,Γ′ ` t : φ. Then i. Γ,Γ′′,Γ′ ` φ : ∗p and ii. Γ,Γ′′,Γ′ ` t : φ.

Finally, we have regularity which is used by the proof of type soundness. These are all the results
about the kinding relation and well-formed contexts that we will need to conclude normalization,
but we need syntactic inversion for the typing relation, because it is not a trivial result like it is for
SSF+.

I Lemma 49 (Regularity). If Γ ` t : φ then Γ ` φ : ∗p for some p.

I Lemma 50 (Transitivity of Type Equality). If Γ ` φ1 ≈ φ2 and Γ ` φ2 ≈ φ3 then Γ ` φ1 ≈ φ3.

I Lemma 51 (Symmetry of Type Equality). If Γ ` φ ≈ φ′ then Γ ` φ′ ≈ φ.

I Lemma 52 (Substitution for Type Equality). If Γ, x : φ,Γ′ ` φ′ ≈ φ′′ and Γ ` t : φ then
Γ, [t/x]Γ′ ` [t/x]φ′ ≈ [t/x]φ′′.

I Lemma 53. If Γ ` φ ≈ Πj : φ1.φ2 then there exists a term h and types φ′1 and φ′2 such that
φ ≡ Πh : φ′1.φ′2.

I Definition 54. The following function constructs the set of redexes within a term:

rset(x) = ∅
rset(join) = ∅
rset(λx : φ.t) = rset(t)
rset(ΛX : ∗l.t) = rset(t)
rset(t1 t2)
= rset(t1, t2) if t1 is not a λ-abstraction.
= {t1 t2} ∪ rset(t′1, t2) if t1 ≡ λx : φ.t′1.
rset(t′′[φ′′])
= rset(t′′) if t′′ is not a type absraction.
= {t′′[φ′′]} ∪ rset(t′′′) if t′′ ≡ ΛX : ∗l.t′′′.

The extention of rset to multiple arguments is defined as follows:

rset(t1, . . . , tn) =def rset(t1) ∪ · · · ∪ rset(tn).

B.2 Properties of The Hereditary Substitution Function

We prove all the same proprites of the heredtiary substitution function as we did for the previous
language. They only differ in the statement of some of the lemmas due to syntactic inversion. We
simply list all the properties below. The defintion of rset can be found in Appendix B.1 of this
report. [8].

I Lemma 55 (Properties of ctypeφ).
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i. If ctypeφ(x, t) = φ′ then head(t) = x and φ′ is a subexpression of φ.

ii. If Γ, x : φ,Γ′ ` t : φ′ and ctypeφ(x, t) = φ′′ then Γ, x : φ,Γ′ ` φ′ ≈ φ′′.
iii. If Γ, x : φ,Γ′ ` t1 t2 : φ′ and head(t1 t2) = x then ctypeφ(x, t1) = Πj : φ1.φ2 for some term

j and types φ1 and φ2.

iv. If Γ, x : φ,Γ′ ` t1 t2 : φ′, Γ ` t : φ, [t/x]φt1 ≡ λy : φ1.q, and t1 is not then there exists a type
ψ such that ctypeφ(x, t1) = ψ.

I Lemma 56 (Total, Type Preserving, and Sound with Respect to Reduction). Suppose
Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′. Then

i. there exists a term t′′ and a type φ′′ such that [t/x]φt′ = t′′, Γ, [t/x]Γ′ ` t′′ : φ′′, and Γ,Γ′ `
φ′′ ≈ [t/x]φ′, and

ii. [t/x]t′  ∗ [t/x]φt′.

I Corollary 57. Suppose Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′. Then Γ, [t/x]Γ′ ` [t/x]φt′ : [t/x]φ′.

I Lemma 58 (Redex Preserving). If Γ ` t : φ, Γ, x : φ,Γ′ ` t′ : φ′ then |rset(t′, t)| ≥
|rset([t/x]φt′)|.

I Lemma 59 (Normality Preserving). If Γ ` n : φ and Γ, x : φ′ ` n′ : φ′ then there exists a
normal term n′′ such that [n/x]φn′ = n′′.

B.3 Proof of Lemma 45

This is a proof by structural induction on the kinding derivation of Γ ` φ : ∗p.

Case.

Γ(X) = ∗p p ≤ q Γ Ok
Γ ` X : ∗q

By inversion of the kind-checking rule Γ Ok.

Case.

Γ ` φ1 : ∗p Γ, x : φ1 ` φ2 : ∗q
Γ ` Πx : φ1.φ2 : ∗max(p,q)

By the induction hypothesis, Γ ` φ1 : ∗p implies Γ Ok, thus, after applying the rule Γ Ok.

Case.

Γ, X : ∗q ` φ : ∗p
Γ ` ∀X : ∗q.φ : ∗max(p,q)+1

By the induction hypothesis Γ, X : ∗p Ok, and by inversion of the type-variable well-formed
contexts rule Γ Ok.

Case.

Γ ` φ : ∗p Γ ` t1 : φ Γ ` t2 : φ
Γ ` t1 = t2 : ∗p

By the induction hypothesis, Γ ` φ : ∗p implies Γ Ok. Now since the above rule does not alter
the context in anyway Γ remains Ok after applying the above rule.
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B.4 Proof of Type Substitution for Kinding, Typing, and Context-Ok

This is a proof by induction on d. We prove the first part of the lemma, and then the second, and
finally the third, doing a case analysis for each implication on the form of the derivation whose depth
is being considered.

Case.

(Γ, X : ∗p,Γ′)(Y ) = ∗r r ≤ s Γ, X : ∗p,Γ′ Ok
Γ, X : ∗p,Γ′ ` Y : ∗s

By assumption Γ ` φ′ : ∗p. We must consider whether or not X ≡ Y . If X ≡ Y then
[φ′/X]Y ≡ φ′, r = p, and q = s; this conclusion is equivalent to Γ, [φ′/X]Γ′ ` φ′ : ∗q and by
the third part of the induction hypothesis
Γ, [φ′/X]Γ′ Ok. If X 6≡ Y then [φ′/X]Y ≡ Y and by the third part of the induction hypothesis
Γ, [φ′/X]Γ′ Ok, hence, Γ, [φ′/X]Γ′ ` Y : ∗q .

Case.

Γ, X : ∗p,Γ′ ` φ1 : ∗r Γ, X : ∗p,Γ′, x : φ1 ` φ2 : ∗s
Γ, X : ∗p,Γ′ ` Πx : φ1.φ2 : ∗max(r,s)

Here q = max(r, s) and by the first part of the induction hypothesis Γ, [φ′/X]Γ′ ` [φ′/X]φ1 :
∗r and Γ, [φ′/X]Γ′, x : [φ′/X]φ1 ` [φ′/X]φ2 : ∗s. We can now reapply the rule to get
Γ, [φ′/X]Γ′ ` [φ′/X](Πx : φ1.φ2) : ∗q .

Case.

Γ, X : ∗q,Γ′, Y : ∗r ` φ : ∗s
Γ, X : ∗p,Γ′ ` ∀Y : ∗r.φ : ∗max(r,s)+1

Here q = max(r, s) + 1 and by the first part of the induction hypothesis
Γ, [φ′/X]Γ′, Y : ∗r ` [φ′/X]φ : ∗s. We can reapply this rule to get Γ, [φ′/X]Γ′ ` [φ′/X]∀Y :
∗r.φ : ∗q .

Case.

Γ, X : ∗p,Γ′ ` φ : ∗p Γ, X : ∗p,Γ′ ` t1 : φ Γ, X : ∗p,Γ′ ` t2 : φ
Γ, X : ∗p,Γ′ ` t1 = t2 : ∗p

By the first part of the induction hypothesis, Γ, [φ′/X]Γ′ ` [φ′/X]φ : ∗p and by the second part,
Γ, [φ′/X]Γ′ ` [φ′/X]t1 : [φ′/X]φ and Γ, [φ′/X]Γ′ ` [φ′/X]t2 : [φ′/X]φ. Finally, by reapply-
ing the equality type kind-checking rule we obtain, Γ, [φ′/X]Γ′ ` [φ′/X]t1 = [φ′/X]t2 : ∗p,
which is equivalent to, Γ, [φ′/X]Γ′ ` [φ′/X](t1 = t2) : ∗p.

We now show the second part of the lemma. The proof proceeds in the same way as the proof of
part one.

Case. Suppose t is a variable.

(Γ, X : ∗l,Γ′)(y) = φ Γ, X : ∗l,Γ′ Ok
Γ, X : ∗l,Γ′ ` y : φ

Clearly, [φ′/X]y  y and (Γ, [φ′/X]Γ′)(y) = [φ′/X]φ, because the assumed context is well-
formed. By the third part of the induction hypothesis,
Γ, [φ′/X]Γ′ Ok. So by applying the variable type-checking rule, Γ, [φ′/X]Γ′ ` y : [φ′/X]φ.
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Case.

Γ, X : ∗l,Γ′, y : φ1 ` t : φ2

Γ, X : ∗l,Γ′ ` λy : φ1.t : Πy : φ1.φ2

By the second part of the induction hypothesis, Γ, [φ′/X]Γ′, y : [φ′/X]φ1 ` [φ′/X]t′ : [φ′/X]φ2.
So by applying the lambda type-checking rule, Γ, [φ′/X]Γ′ ` λy : [φ′/X]φ1.[φ′/X]t′ : Πy :
[φ′/X]φ1.[φ′/X]φ2, which is equivalent to
Γ, [φ′/X]Γ′ ` [φ′/X](λy : φ1.t

′) : [φ′/X](Πy : φ1.φ2).
Case.

Γ, X : ∗l,Γ′, Y : ∗p ` t : φ
Γ, X : ∗l,Γ′ ` ΛY : ∗p.t : ∀Y : ∗p.φ

This case is similar to the previous case.
Case.

t1 ↓ t2 Γ, X : ∗l,Γ′ Ok
Γ, X : ∗l,Γ′ ` join : t1 = t2

It is a property of full β-reduction that if t1 ↓ t2 then [φ′/X]t1 ↓ [φ′/X]t2. By the third part
of the induction hypothesis, Γ, [φ′/X]Γ′ Ok. Now by applying the join type-checking rule,
Γ, [φ′/X]Γ′ ` join : [φ′/X]t1 = [φ′/X]t2.

Case.

Γ, X : ∗l,Γ′ ` t0 : t1 = t2 Γ, X : ∗l,Γ′ ` t : [t1/y]φ
Γ, X : ∗l,Γ′ ` t : [t2/y]φ

By the second part of the induction hypothesis, Γ, [φ′/X]Γ′ ` [φ′/X]t0 : [φ′/X]t1
= [φ′/X]t2 and Γ, [φ′/X]Γ′ ` [φ′/X]t : [φ′/X][t1/y]φ. The latter is equivalent to Γ, [φ′/X]Γ′ `
[φ′/X]t : [[φ′/X]t1/y][φ′/X]φ. Now by applying the conversion type-checking rule, Γ, [φ′/X]Γ′ `
[φ′/X]t : [[φ′/X]t2/y][φ′/X]φ.

Case.

Γ, X : ∗l,Γ′ ` t1 : Πy : φ1.φ2 Γ, X : ∗l,Γ′ ` t2 : φ1

Γ, X : ∗l,Γ′ ` t1 t2 : [t2/y]φ2

By the second part of the induction hypothesis, Γ, [φ′/X]Γ′ ` [φ′/X]t1 : Πy : [φ′/X]φ1.[φ′/X]φ2
and Γ, [φ′/X]Γ′ ` [φ′/X]t2 : [φ′/X]φ1. By applying the application type-checking rule,
Γ, [φ′/X]Γ′ ` [φ′/X]t1 [φ′/X]t2 : [[φ′/X]t2/y]φ2, which is equivalent to Γ, [φ′/X]Γ′ `
[φ′/X](t1 t2) : [φ′/X][t2/y]φ2.

Case.

Γ, X : ∗l,Γ′ ` t : ∀Y : ∗p.φ1 Γ, X : ∗l,Γ′ ` φ2 : ∗p
Γ, X : ∗l,Γ′ ` t[φ2] : [φ2/Y ]φ1

By the second part of the induction hypothesis, Γ, [φ′/X]Γ′ ` [φ′/X]t : ∀Y : ∗p.[φ′/X]φ1 and
by by the first part, Γ, [φ′/X]Γ′ ` [φ′/X]φ2 : ∗p. Finally by applying the instantiation type-
checking rule, Γ, [φ′/X]Γ′ ` [φ′/X]t[[φ′/X]φ2] : [[φ′/X]φ2/Y ][φ′/X]φ1, which is equivalent
to Γ, [φ′/X]Γ′ ` [φ′/X](t[φ2]) : [φ′/X][φ2/Y ]φ1.

We now show the third part of the lemma. The case were d = 0 cannot arise, since it requires the
context to be empty. Suppose d = n + 1. We do a case analysis on the last rule applied in the
derivation of Γ, X : ∗p,Γ′.
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Case. Suppose Γ′ = Γ′′, Y : ∗q .

Γ, X : ∗p,Γ′′ Ok
Γ, X : ∗p,Γ′′, Y : ∗q Ok

By the third part of the induction hypothesis, Γ, [φ′/X]Γ′′ Ok. Now, by reapplying the rule
above Γ, [φ′/X]Γ′′, Y : ∗q Ok, hence Γ, [φ′/X]Γ′ Ok, since X 6≡ Y .

Case. Suppose Γ′ = Γ′′, y : φ.

Γ, X : ∗p,Γ′′ ` φ : ∗q Γ, X : ∗p,Γ′′ Ok
Γ, X : ∗p,Γ′′, y : φ Ok

By the first part of the induction hypothesis, Γ′, [φ′/X]Γ′′ ` [φ′/X]φ : ∗q and Γ′, [φ′/X]Γ′′ Ok.
Thus, by reapplying the rule above Γ, [φ′/X]Γ′′, x : [φ′/X]φ Ok, therefore, Γ, [φ′/X]Γ′ Ok.

B.5 Proof of Term Substitution for Kinding, Typing, and Context-Ok

This is a proof by induction on d. We prove the i. first, and then the second and finally the third, doing
a case analysis for each implication on the form of the derivation whose depth is being considered.

Case.

(Γ, X : ∗p,Γ′)(Y ) = ∗r r ≤ s Γ, x : φ′,Γ′ Ok
Γ, x : φ′,Γ′ ` Y : ∗s

Clearly, [t′/x]Y  Y , so (Γ, [t′/x]Γ′)(Y ) = ∗r. By the second part of the induction hypothesis,
Γ, [t′/x]Γ′ Ok. By applying the variable kind-checking rule, Γ, [t′/x]Γ′ ` Y : ∗s.

Case.

Γ, x : φ′,Γ′ ` φ1 : ∗r Γ, x : φ′,Γ′, y : φ1 ` φ2 : ∗s
Γ, x : φ′,Γ′ ` Πy : φ1.φ2 : ∗max(r,s)

By the first part of the induction hypothesis, Γ, [t′/x]Γ′ ` [t′/x]φ1 : ∗r and Γ, [t′/x]Γ′, y :
[t′/x]φ1 ` [t′/x]φ2 : ∗s. By applying the Π-type type-checking rule, Γ, [t′/x]Γ′ ` Πy :
[t′/x]φ1.[t′/x]φ2 : ∗max(r,s), which is equivalent to Γ, [t′/x]Γ′ ` [t′/x](Πy : φ1.φ2) : ∗max(r,s).

Case.

Γ, x : φ′,Γ′, Y : ∗r ` φ : ∗s
Γ, x : φ′,Γ′ ` ∀Y : ∗r.φ : ∗max(r,s)+1

By the first part of the induction hypothesis, Γ, [t′/x]Γ′, Y : ∗r ` [t′/x]φ : ∗s and by applying
the forall-type type-checking rule, Γ, [t′/x]Γ′ ` ∀Y : ∗r.[t′/x]φ : ∗max(r,s)+1. The latter is
equivalent to
Γ, [t′/x]Γ′ ` ∀[t′/x](Y : ∗r.φ) : ∗max(r,s)+1.

Case.

Γ, x : φ′,Γ′ ` φ : ∗p Γ, x : φ′,Γ′ ` t1 : φ Γ, x : φ′,Γ′ ` t2 : φ
Γ, x : φ′,Γ′ ` t1 = t2 : ∗p

By third part of the induction hypothesis, Γ, [t′/x]Γ′ ` [t′/x]t1 : [t′/x]φ and Γ, [t′/x]Γ′ `
[t′/x]t2 : [t′/x]φ. By the first part of the induction hypothesis,Γ,Γ′ ` t1 = t2 : ∗p. Finally, by
reapplying the type equality kind-checking rule,

We now prove the second part of the lemma. This part proceeds in the exact same way as the first.
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Case. Suppose t is a variable.

(Γ, x : φ′,Γ′)(y) = φ Γ, x : φ′,Γ′ Ok
Γ, x : φ′,Γ′ ` y : φ

Case. Let y ≡ x. Then [t′/x]t t′. Thus, Γ ` [t′/x]t : [t′/x]φ.
Case. Let y be distinct from x. By the third part of the induction hypothesis

Γ, [t′/x]Γ′ Ok and since y is distinct from x, (Γ, [t′/x]Γ′)(y) = [t′/x]φ. Now after applying
the variable type-checking rule we obtain Γ′, [t′/x]Γ′ ` y : [t′/x]φ.

Case.

Γ, x : φ′,Γ′, y : φ1 ` t : φ2

Γ, x : φ′,Γ′ ` λy : φ1.t : Πy : φ1.φ2
By the second part of the induction hypothesis, Γ, [t′/x]Γ′, y : [t′/x]φ1 ` [t′/x]t : [t′/x]φ2.
Now by reapplying the lambda type-checking rules we obtain, Γ, [t′/x]Γ′ ` λy : [t′/x]φ1.t :
Πy : [t′/x]φ1.[t′/x]φ2, which is equivalent to Γ, [t′/x]Γ′ ` [t′/x](λy : φ1.t) : [t′/x](Πy :
φ1.φ2).

Case.

Γ, x : φ′,Γ′, X : ∗p ` t : φ
Γ, x : φ′,Γ′ ` ΛX : ∗p.t : ∀X : ∗p.φ

This case is similar to the previous case.
Case.

t1 ↓ t2 Γ, x : φ′,Γ′ Ok
Γ, x : φ′,Γ′ ` join : t1 = t2

It is a well known property of full β-reduction that if t1 ↓ t2 then [t′/x]t1 ↓ [t′/x]t2. By
the third part of the induction hypothesis we know Γ, [t′x/]Γ′ Ok. Now by applying the join
type-checking rule we obtain Γ, [t′/x]Γ′ ` join : [t′x/]t1 ↓ [t′/x]t2.

Case.

Γ, x : φ′,Γ′ ` t0 : t1 = t2 Γ, x : φ′,Γ′ ` t : [t1/y]φ
Γ, x : φ′,Γ′ ` t : [t2/y]φ

By the second part of the induction hypothesis we know Γ, [t′/x]Γ′ ` [t′/x]t0 : [t′/x]t1 =
[t′/x]t2 and Γ, [t′/x]Γ′ ` [t′/x]t : [t′/x][[t′/x]t1/y]φ. Clearly,
Γ, [t′/x]Γ′ ` [t′/x]t : [t′/x][[t′/x]t1/y]φ is equivalent to Γ, [t′/x]Γ′ ` [t′/x]t : [[t′/x]t1/y][t′/x]φ.
Now by applying the conv type-checking rule we obtain
Γ, [t′/x]Γ′ ` [t′/x]t : [[t′/x]t2/y][t′/x]φ.

Case.

Γ, x : φ′,Γ′ ` t1 : Πy : φ1.φ2 Γ, x : φ′,Γ′ ` t2 : φ1

Γ, x : φ′,Γ′ ` t1 t2 : [t2/y]φ2
By the second part of the induction hypothesis, Γ, [t′/x]Γ′ ` [t′/x]t1 : Πy : [t′/x]φ1.[t′/x]φ2
and Γ, [t′/x]Γ′ ` [t′/x]t2 : [t′/x]φ1. Now by applying the application type-checking rule we
obtain,
Γ, [t′/x]Γ′ ` [t′/x](t1 t2) : [[t′/x]t2/y][t′/x]φ2.

Case.
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Γ, x : φ′,Γ′ ` t : ∀X : ∗l.φ1 Γ, x : φ′,Γ′ ` φ2 : ∗l
Γ, x : φ′,Γ′ ` t[φ2] : [φ2/X]φ1

By the second part of the induction hypothesis, Γ, [t′/x]Γ′ ` [t′/x]t : ∀X : ∗l.[t′/x]φ1. By
first part of the induction hypothesis, Γ, [t′/x]Γ′ ` [t′/x]φ2 : ∗l. Now by applying the type
instantiation type-checking rule we obtain Γ, [t′/x]Γ′ ` [t′/x](t[φ2]) : [[t′/x]φ2/X][t′/x]φ1.

We now show the third implication. The case were d = 0 cannot arise, since it requires the context
to be empty. Suppose d = n+ 1. We do a case analysis on the last rule applied in the derivation of
Γ, x : φ′,Γ′.

Case. Suppose Γ′ = Γ′′, Y : ∗q .

Γ, x : φ′,Γ′′ Ok
Γ, x : φ′,Γ′′, Y : ∗q Ok

By the third part of the induction hypothesis, Γ, [t′/x]Γ′′ Ok. Now, by reapplying the rule above
Γ, [t′/x]Γ′′, Y : ∗q Ok, hence Γ, [t′/x]Γ′ Ok.

Case. Suppose Γ′ = Γ′′, y : φ.

Γ, x : φ′,Γ′′ ` φ : ∗q Γ, x : φ′,Γ′′ Ok
Γ, x : φ′,Γ′′, y : φ Ok

By the first part of the induction hypothesis, Γ′, [t′/x]Γ′′ ` [t′/x]φ : ∗q and Γ′, [t′/x]Γ′′ Ok.
Thus, by reapplying the rule above Γ, [t′/x]Γ′′, y : [t′/x]φ Ok, therefore, Γ, [t′/x]Γ′ Ok.

B.6 Proof of Context Weakening for Kinding and Typing

We first prove part i. This is a proof by structural induction on the kinding derivation of Γ,Γ′ ` φ :
∗p.

Case.

(Γ,Γ′)(X) = ∗p p ≤ q Γ,Γ′ Ok
Γ,Γ′ ` X : ∗q

If (Γ,Γ′)(X) = ∗p then (Γ,Γ′′,Γ′)(X) = ∗p, hence, by reapplying the type-variable kind-
checking rule, Γ,Γ′′,Γ′ ` φ : ∗p.

Case.

Γ,Γ′ ` φ1 : ∗p Γ,Γ′, x : φ1 ` φ2 : ∗q
Γ,Γ′ ` Πx : φ1.φ2 : ∗max(p,q)

By the induction hypothesis Γ,Γ′′,Γ′ ` φ1 : ∗p and Γ,Γ′′,Γ′, x : φ1 ` φ2 : ∗q , hence, by
reapplying the Π-type kind-checking rule Γ,Γ′′,Γ′′ ` Πx : φ1.φ2 : ∗max(p,q).

Case.

Γ,Γ′ ` φ : ∗p Γ,Γ′ ` t1 : φ Γ,Γ′ ` t2 : φ
Γ,Γ′ ` t1 = t2 : ∗p

By the induction hypothesis we know, Γ,Γ′′,Γ′ ` φ : ∗p. By assumption we know Γ,Γ′′,Γ′ Ok,
Γ,Γ′ ` t1 : φ, and Γ,Γ′ ` t2 : φ, thus, by the second part of the induction hypothesis, Γ,Γ′′,Γ′ `
t1 : φ and Γ,Γ′′,Γ′ ` t2 : φ. Now by applying the equality type kind-checking rule we obtain,
Γ,Γ′′,Γ′ ` t1 = t2 : ∗p.

Case.
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Γ,Γ′, X : ∗q ` φ′ : ∗p
Γ,Γ′ ` ∀X : ∗q.φ′ : ∗max(p,q)+1

By the induction hypothesis Γ,Γ′′,Γ′, X : ∗p ` φ : ∗q , hence, by reapplying the forall-type
kind-checking rule Γ,Γ′′,Γ′ ` ∀X : ∗p.φ : ∗max(p,q)+1.

We now prove part two.
This is a proof by induction on the form of the typing derivation of Γ,Γ′ ` t : φ.

Case.

(Γ,Γ′)(x) = φ Γ,Γ′ Ok
Γ,Γ′ ` x : φ

Clearly, if (Γ,Γ′)(x) = φ then (Γ,Γ′′,Γ′)(x) = φ. By assumption, Γ,Γ′′,Γ′ Ok. Finally, by
reapplying the variable type-checking rule, Γ,Γ′′,Γ′ ` x : φ.

Case.

Γ,Γ′, x : φ1 ` t : φ2

Γ,Γ′ ` λx : φ1.t : Πx : φ1.φ2
By the first induction hypothesis, Γ,Γ′′,Γ′, x : φ1 ` t : φ2 and by reapplying the lambda
type-checking rule, Γ,Γ′′,Γ′ ` λx : φ1.t : Πx : φ1.φ2.

Case.

Γ,Γ′ ` t1 : Πx : φ1.φ2 Γ,Γ′ ` t2 : φ1

Γ,Γ′ ` t1 t2 : [t2/x]φ2
By the first induction hypothesis, Γ,Γ′′,Γ′ ` t1 : Πx : φ1.φ2 and Γ,Γ′′,Γ′ ` t2 : φ1. Now by
reapplying the application type-checking rule, Γ,Γ′′,Γ′ ` t1 t2 : [t2/x]φ2.

Case.

Γ,Γ′, X : ∗p ` t : φ
Γ,Γ′ ` ΛX : ∗p.t : ∀X : ∗p.φ

By the first induction hypothesis, Γ,Γ′′,Γ′, X : ∗p ` t : φ and by reapplying the type abstraction
type-checking rule, Γ,Γ′′,Γ′ ` ΛX : ∗p.t : ∀X : ∗p.φ.

Case.

Γ,Γ′ ` t : ∀X : ∗l.φ1 Γ,Γ′ ` φ2 : ∗l
Γ,Γ′ ` t[φ2] : [φ2/X]φ1

By the first induction hypothesis we know Γ,Γ′′,Γ′ ` t : ∀X : ∗l.φ1 and by the second
Γ,Γ′′,Γ′ ` φ2 : ∗l. By applying the type instantiation type-checking rule, Γ,Γ′′,Γ′ ` t[φ2] :
[φ2/X]φ1.

Case.

t1 ↓ t2 Γ,Γ′ ` t1 : φ Γ,Γ′ ` t2 : φ Γ,Γ′ Ok
Γ,Γ′ ` join : t1 = t2

By the induction hypothesis, Γ,Γ′′,Γ′ ` t1 : φ and Γ,Γ′′,Γ′ ` t2 : φ. We know by assumption
that Γ,Γ′′,Γ′ Ok. By reapplying the join type type-checking rule, Γ,Γ′′,Γ′ ` join : t1 = t2.

Case.

Γ,Γ′ ` t0 : t1 = t2 Γ,Γ′ ` t : [t1/x]φ
Γ,Γ′ ` t : [t2/x]φ
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By the induction hypothesis, Γ,Γ′′,Γ′ ` t0 : t1 = t2 and Γ,Γ′′,Γ′ ` t : [t1/x]φ. By reapplying
the conv type-checking rules, Γ,Γ′′,Γ′ ` t : [t2/x]φ.

B.7 Proof of Regularity

This proof is by structural induction on the derivation of Γ ` t : φ.
Case.

Γ(x) = φ Γ Ok
Γ ` x : φ

By the definition of well-formedness contexts Γ ` φ : ∗p for some p.
Case.

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : Πx : φ1.φ2
By the induction hypothesis Γ ` φ1 : ∗p, Γ, x : φ1 ` φ2 : ∗q and by applying the Π-type
kind-checking rule we get Γ ` Πx : φ1.φ2 : ∗max(p,q).

Case.

t1 ↓ t2 Γ ` t1 : φ Γ ` t2 : φ Γ Ok
Γ ` join : t1 = t2

By the induction hypothesis we know Γ ` φ : ∗l. Thus, by applying the equality type kind-
checking rule, Γ ` t1 = t2 : ∗l.

Case.

Γ ` t0 : t1 = t2 Γ ` t : [t1/x]φ
Γ ` t : [t2/x]φ

By the induction hypothesis, Γ ` t1 = t2 : ∗p and Γ ` [t1/x]φ : ∗q which implies Γ, x : φ′′ `
φ′ : ∗q . By inversion of the equality type kind-checking rule, Γ ` t1 : φ′′ and Γ ` t2 : φ′′. Thus,
by Lemma 47, Γ ` [t2/x]φ : ∗q .

Case.

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
By the induction hypothesis Γ ` φ1 → φ2 : ∗r and Γ ` φ1 : ∗p. By inversion of the arrow-type
kind-checking rule r = max(p, q), for some q, which implies Γ ` φ2 : ∗q .

Case.

Γ, X : ∗p ` t : φ
Γ ` ΛX : ∗p.t : ∀X : ∗q.φ

By the induction hypothesis Γ, X : ∗q ` φ : ∗p. By applying the forall-type kind-checking rule
Γ ` ∀X.φ : ∗max(p,q)+1.

Case.

Γ ` t : ∀X : ∗p.φ1 Γ ` φ2 : ∗p
Γ ` t[φ2] : [φ2/X]φ1

By assumption Γ ` φ2 : ∗r. By the induction hypothesis Γ ` ∀X : ∗p.φ1 : ∗s and by
inversion of the forall-type kind-checking rule r = max(p, q) + 1, for some q, which implies
Γ, X : ∗p ` φ1 : ∗q . Now, by Lemma 46, Γ ` [φ2/X]φ1 : ∗q .
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B.8 Proof of Transitivity of Type Equality

This is a proof by induction on the form of first assumed type equality with an inner induction on
the form of the second.

Case.

Γ ` p : t1 = t2

Γ ` [t1/x]φ ≈ [t2/x]φ
TEQ1

We case split on the form of the final rule applied in the derivation of Γ ` φ2 ≈ φ3.
Case.

Γ ` p′ : t′1 = t′2

Γ ` [t′1/z]φ ≈ [t′2/z]φ
TEQ1

Trivial, because we are using the same type in all equalities.
Case.

Γ ` [t2/x]φ ≈ [t2/x]φ3 Γ ` p : t2 = t3

Γ ` [t2/x]φ ≈ [t3/x]φ3
TEQ2

By the induction hypothesis we know Γ ` [t1/x]φ ≈ [t2/x]φ3 and by applying TEQ2 using
Γ ` p : t2 = t3 we obtain Γ ` [t1/x]φ ≈ [t3/x]φ3.

Case.

Γ ` [t1/x]φ1 ≈ [t1/x]φ2 Γ ` p : t1 = t2

Γ ` [t1/x]φ1 ≈ [t2/x]φ2
TEQ2

Case.

Γ ` p′ : t′1 = t′2

Γ ` [t′1/z]φ2 ≈ [t′2/z]φ2
TEQ1

Trivial.
Case.

Γ ` [t2/x]φ2 ≈ [t2/x]φ3 Γ ` p : t2 = t3

Γ ` [t2/x]φ2 ≈ [t3/x]φ3
TEQ2

By the induction hypothesis we know Γ ` [t1/x]φ1 ≈ [t2/x]φ3 and by applying TEq2 using
Γ ` p : t2 = t3 we obtain Γ ` [t1/x]φ1 ≈ [t3/x]φ3.

B.9 Proof of Symmetry of Type Equality

This is a proof by induction on the assumed type equality.
Case.

Γ ` p : t1 = t2

Γ ` [t1/x]φ ≈ [t2/x]φ
TEQ1

It suffices to show that there exists a p′ such that Γ ` p′ : t2 = t1. We obtain this by the following
typing derivation:

Γ ` p : t1 = t2 Γ ` join : [t1/y](y = t1)
Γ ` join : t2 = t1

CONV

Therefore, by applying TEQ1 using the previous proof we obtain Γ ` [t2/x]φ ≈ [t1/x]φ.
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Case.

Γ ` [t1/x]φ ≈ [t1/x]φ′ Γ ` p : t1 = t2

Γ ` [t1/x]φ ≈ [t2/x]φ′
TEQ2

By the induction hypothesis Γ ` [t1/x]φ′ ≈ [t1/x]φ. Clearly, if Γ ` [t1/x]φ′ ≈ [t1/x]φ then
Γ, x : φ′′ ` φ′ ≈ φ for some type φ′′ such that Γ ` t1 : φ and Γ ` t2 : φ. We know such a type
exists by inversion on Γ ` p : t1 = t2. Now by the substitution for type equality lemma using
Γ, x : φ′′ ` φ′ ≈ φ and Γ ` t2 : φ we know Γ ` [t2/x]φ′ ≈ [t2/x]φ. We obtain our desired
result by the following derivation:

Γ ` [t2/x]φ′ ≈ [t2/x]φ
Γ ` p : t1 = t2 Γ ` join : [t1/y](y = t1)

Γ ` join : t2 = t1
CONV

Γ ` [t2/x]φ′ ≈ [t1/x]φ
TEQ2

B.10 Proof of Substitution for Type Equality

This is a proof by induction on the form of the assumed type-equality judgement.
Case.

Γ, x : φ,Γ′ ` p : t1 = t2

Γ, x : φ,Γ′ ` [t1/x]φ ≈ [t2/x]φ
TEQ1

By Lemma ??, Γ, [n/x]Γ′ ` [n/x]p : [n/x](t1 = t2). Now by applying TEq1, Γ, [n/x]Γ′ `
[[n/x]t1/x][n/x]φ ≈ [[n/x]t2/x][n/x]φ.

Case.

Γ, x : φ,Γ′ ` [t1/y]φ ≈ [t1/y]φ′ Γ, x : φ,Γ′ ` p : t1 = t2

Γ, x : φ,Γ′ ` [t1/y]φ ≈ [t2/y]φ′
TEQ2

By the induction hypothesis, Γ, [n/x]Γ′ ` [[n/x]t1/y][n/x]φ ≈ [[n/x]t1/y][n/x]φ′. By Lemma ??,
Γ, [n/x]Γ′ ` [n/x]p : [n/x]t1 = [n/x]t2. Therefore by applying TEq2, Γ, [n/x]Γ′ ` [n/x]t1/y][n/x]φ ≈
[[n/x]t2/y][n/x]φ′.

B.11 Proof of Type Syntactic Conversion

If Γ ` t : φ and Γ ` φ ≈ φ′ then we know several things: φ ≡ [t̄/x̄]φ′′, φ′ ≡ [t̄′/x̄′]φ′′,
Γ ` p̄ : t̄ = t̄′, and Γ ` t : [t̄/x̄]φ′′ for some type φ′′. Suppose each vector has i elements. Then
by applying the conversion type-checking rule i times with the appropriate proof from our vector of
proofs we will obtain Γ ` t : [t̄′/x̄]φ′′. This last result is exactly, Γ ` t : φ′.

B.12 Proof of Lemma 53

This is a proof by induction on the form of the assume type-equality derivation.

Case.

Γ ` p : t1 = t2

Γ ` [t1/x](Πj : φ′1.φ′2) ≈ [t2/x](Πj : φ′1.φ′2)
TEQ1

Trivial, because φ must also be a Π-type.
Case.
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Γ ` [t1/x]φ′ ≈ [t1/x](Πj : φ′1.φ′2) Γ ` p : t1 = t2

Γ ` [t1/x]φ′ ≈ [t2/x](Πj : φ′1.φ′2)
TEQ2

By the induction hypothesis φ ≡ [t1/x]φ′ ≡ Πh : ψ1.ψ2 for some term h and types ψ1 and ψ2.

B.13 Proof of Injectivity of Π-Types for Type Equality

This is a proof by induction on the form of the assumed typing derivation.
Case.

Γ ` p : t1 = t2

Γ ` [t1/x]φ′ ≈ [t2/x]φ′
TEQ1

Trivial, becasue φ′ and φ′′ only differ by terms, which do not affect the ordering of types.
Case.

Γ ` [t1/x]φ′ ≈ [t1/x]φ′′ Γ ` p : t1 = t2

Γ ` [t1/x]φ′ ≈ [t2/x]φ′′
TEQ2

By the induction hypothesis φ >Γ [t1/x]φ′′, which implies that φ >Γ [t2/x]φ′′.

B.14 Proof of Lemma 22

The possible form for ψ is only a Π-type. So it suffices to show that if Γ ` Πy : φ′1.φ′2 ≈ Πy : φ1.φ2
and ψ is a subexpression of φ′′ then φ′′ >Γ φ1 and φ′′ >Γ,y:φ1 φ2.

It must be the case that φ′′ >Γ φ
′
1 and φ′′ >Γ,y:φ1 φ

′
2, because φ′1 and φ′2 are both subexpressions of

φ′′. By injectivity of Π-types for typed equality we obtain Γ ` φ′1 ≈ φ1 and Γ, y : φ1 ` φ′2 ≈ φ2.
Finally, by Lemma 21 we know φ′′ >Γ φ1 and φ′′ >Γ,y:φ1 φ2.

B.15 Proof of Syntactic Inversion

We prove all cases by induction on the form of the typing relation.

Case. Part i.

Case.

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : Πx : φ1.φ2
Trivial.

Case.

Γ ` p : t1 = t2 Γ ` λx : φ1.t : [t1/y]φ′

Γ ` λx : φ1.t : [t2/y]φ′

Here φ ≡ [t2/y]φ′. By the induction hypothesis, where φ is [t1/y]φ′, there exists a type
φ2, such that Γ, x : φ1 ` t : φ2 and Γ ` Πx : φ1.φ2 ≈ [t1/y]φ′, which implies that
Γ ` [t′1/y](Πx : φ′1.φ′2) ≈ [t1/y]φ′ and Γ ` p′ : t′1 = t1 for some terms t′1 and p′. Hence,
by TEq2 Γ ` [t1/y](Πx : φ′1.φ′2) ≈ [t1/y]φ′ and by applying the same rule a second time,
except using the proof Γ ` p : t1 = t2 we obtain Γ ` [t1/y](Πx : φ′1.φ′2) ≈ [t2/y]φ′. Finally,
using TEq2 a third time using Γ ` p′ : t′1 = t1 we obtain Γ ` [t′1/y](Πx : φ′1.φ′2) ≈ [t2/y]φ′,
which is equivalent to Γ ` Πx : φ1.φ2 ≈ [t2/y]φ′.
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Case. Part ii.

Case.

Γ ` t1 : Πx : φ1.φ2 Γ ` t2 : φ1

Γ ` t1 t2 : [t2/x]φ2
Trivial.

Case.

Γ ` p : t1 = t2 Γ ` t1 t2 : [t1/y]φ
Γ ` t1 t2 : [t2/y]φ

Similar to the previous case.
Case. Part iii.

Case.

Γ, X : ∗l ` t : φ
Γ ` ΛX : ∗l.t : ∀X : ∗l.φ

Trivial.
Case.

Γ ` p : t1 = t2 Γ ` ΛX : ∗l.t : [t1/y]φ′′

Γ ` ΛX : ∗l.t : [t2/y]φ′′

Similar to the previous case.
Case. Part iv.

Case.

Γ ` t : ∀X : ∗l.φ1 Γ ` φ2 : ∗l
Γ ` t[φ2] : [φ2/X]φ1

Trivial.
Case.

Γ ` p : t1 = t2 Γ ` t[φ2] : [t1/y]φ′

Γ ` t[φ2] : [t2/y]φ′

Similar to the previous case.
Case. Part v.

Case.

t1 ↓ t2 Γ ` t1 : φ Γ ` t2 : φ Γ Ok
Γ ` join : t1 = t2

Trivial.
Case.

Γ ` p : t′1 = t′2 Γ ` join : [t′1/y]φ′)
Γ ` join : [t′2/y]φ′

Similar to the previous case.
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B.16 Proof of Properties of ctypeφ
We prove part one first. This is a proof by induction on the structure of t.

Case. Suppose t ≡ x. Then ctypeφ(x, x) = φ. Clearly, head(x) = x and φ is a subexpression of
itself.

Case. Suppose t ≡ t1 t2. Then ctypeφ(x, t1 t2) = φ′′ when ctypeφ(x, t1) = Πy : φ′.φ′′. Now t > t1
so by the induciton hypothesis head(t1) = x and Πy : φ′.φ′′ is a subexpression of φ. Therefore,
head(t1 t2) = x and certainly φ′′ is a subexpression of φ.

We now prove part two. This is also a proof by induction on the structure of t.

Case. Suppose t ≡ x. Then ctypeφ(x, x) = φ. Clearly, Γ, x : φ,Γ′ ` φ ≈ φ.
Case. Suppose t ≡ t1 t2. Then ctypeφ(x, t1 t2) = [t2/y]φ2 when ctypeφ(x, t1) = Πy : φ1.φ2. By

inversion on the assumption Γ, x : φ,Γ′ ` t′ : φ′ there exists a term z and types ψ1 and ψ2
such that Γ, x : φ,Γ′ ` t1 : Πz : ψ1.ψ2 and Γ, x : φ,Γ′ ` φ′ ≈ [t2/z]ψ2. Now t > t1 so
by the induction hypothesis Γ, x : φ,Γ′ ` Πz : ψ1.φ2 ≈ Πy : φ1.φ2. Injectivity of equalities
between Π-types yeilds Γ, x : φ,Γ′ ` ψ1 ≈ φ1, and Γ, x : φ,Γ′, z : ψ1 ` ψ2 ≈ [z/y]φ2
and by substitution for types equality Γ, x : φ,Γ′, y : φ1 ` [t2/y]([y/z]ψ2) ≈ [t2/y]φ2. Now
Γ, x : φ,Γ′ ` φ′ ≈ [t2/z]ψ2 is equivalent to Γ, x : φ,Γ′ ` φ′ ≈ [t2/y]([y/z]ψ2). Therefore, by
transitivity of types equality Γ, x : φ,Γ′ ` φ′ ≈ [t2/y]φ2.

Next we prove part three. This is a proof by induction on the structure of t1.

Case. Suppose t1 ≡ x. Then ctypeφ(x, x) = φ and by inversion on the assumed typed derivation
Γ, x : φ,Γ′ ` x : Πj : φ1.φ2 for some term j and types φ1 and φ2 which implies that φ ≡ Πj :
φ1.φ2.

Case. Suppose t1 ≡ t′1 t
′
2. Again by inversion on the assumed typing derivation there exists a term

j and types φ1 and φ2 such that Γ, x : φ,Γ′ ` t′1 t
′
2 : Πj : φ1.φ2. Now ctypeφ(x, t1) =

ctypeφ(x, t′1 t′2) = [t′2/j]φ2 when ctypeφ(x, t′1) = Πh : φ′1.φ′2. Now head(t1 t2) = x implies
that head(t′1) = x so by the induction hypothesis there exists a term h and types φ′1 and φ′2 such
that ctypeφ(x, t′1) = Πh : φ′1.φ′2.

Finally, we prove part four. This is a proof by induction on the structure of t1 t2.

The only possiblities for the form of t1 is x or a t̂1 t̂2. All other forms would not result in [t/x]φt1
being a λ-abstraction and t1 not. Suppose t1 ≡ x. Then by inversion on the assumption Γ, x : φ,Γ′ `
t1 t2 : φ′ there exists types φ1 and φ2 such that Γ, x : φ,Γ′ ` t1 : Πz : φ1.φ2, Γ, x : φ,Γ′, z : φ1 `
t2 : φ2, and Γ, x : φ,Γ′ ` φ′ ≈ [t2/x]φ2. Now in this case it must be that φ ≡ Πz : φ1.φ2 and
ctypeφ(x, x t2) = [t2/x]φ2 when ctypeφ(x, x) = φ ≡ Πz : φ1.φ2 in this case.

Now suppose t1 ≡ (t̂1 t̂2). Now knowing t′1 to not be a λ-abstraction implies that t̂1 is also not a
λ-abstraction or [t/x]φt1 would be an application instead of a λ-abstraction. So it must be the case
that [t/x]φt̂1 is a λ-abstraction and t̂1 is not. Since t1 t2 > t1 we can apply the induction hypothesis
to obtain there exists a type ψ such that ctypeφ(x, t̂1) = ψ.

Now by inversion on Γ, x : φ,Γ′ ` t1 t2 : φ′ we know there exists a term z and types φ1 and
φ2 such that Γ, x : φ,Γ′ ` t1 : Πz : φ1.φ2 and Γ, x : φ,Γ′, z : φ1 ` t2 : φ2, and Γ, x :
φ,Γ′ ` φ′ ≈ [t2/z]φ2. We know t1 ≡ (t̂1 t̂2) so by inversion on Γ, x : φ,Γ′ ` t1 : Πz : φ1.φ2
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we know there exists a term j and types ψ1 and ψ2 such that Γ, x : φ,Γ′ ` t̂1 : Πj : ψ1.ψ2,
Γ, x : φ,Γ′, j : ψ1 ` t̂2 : ψ2, and Γ, x : φ,Γ′ ` Πz : φ1.φ2 ≈ [t̂2/j]ψ2.

By part two of Lemma 55 we know Γ, x : φ,Γ′ ` ψ ≈ Πj : ψ1.ψ2 and by Lemma 53 ψ ≡ Πh :
ψ′1.ψ

′
2 for some term h and types ψ′1 and ψ′2. At this point ctypeφ(x, t1) = ctypeφ(x, t̂1 t̂2) =

[t̂2/h]ψ′2 when ctypeφ(x, t̂1) = Πh : ψ′1.ψ′2.

B.17 Proof of Total, Type Preserving, and Sound with Respect to
Reduction

First, we prove part one. This is a proof by induction on the lexicorgraphic combination (φ, t′) of
>Γ,Γ′ and the strict subexpression ordering. We case split on t′.

Case. Suppose t′ is either x or a variable y distinct from x. Trivial in both cases.

Case. Suppose t′ ≡ join. Trivial.

Case. Suppose t′ ≡ λy : φ1.t
′
1. First, since t′ is a λ-abstraction we know φ′ ≡ Πy : φ1.φ2 for

some type φ2. To make use of the induction hypothesis we first must show that t′1 is typeable.
Applying the inversion lemma to the assumption Γ, x : φ,Γ′ ` λy : φ1.t

′
1 : Πy : φ1.φ2

yeilds (i) Γ, x : φ,Γ′, y : φ1 ` t′1 : φ′2 for some type φ′2 such that (ii) Γ, x : φ,Γ′ ` Πy :
φ1.φ

′
2 ≈ Πy : φ1.φ2. Lastly, by applying the substitution for syntactic equality we obtain

Γ, [t/x]Γ′ ` [t/x](Πy : φ1.φ
′
2) ≈ [t/x](Πy : φ1.φ2). At this point we can apply the induction

hypothesis.

We know t′ > t′1, so by the first part of the induction hypothesis there exists a term t̂′1 and type
ψ such that [t/x]φt′1 = t̂′1, Γ, [t/x]Γ′, y : [t/x]φ1 ` t̂′1 : ψ, and Γ, [t/x]Γ′, y : [t/x]φ2 ` ψ ≈
[t/x]φ′2. Applying syntactic conversion on Γ, [t/x]Γ′, y : [t/x]φ1 ` t̂′1 : ψ using Γ, [t/x]Γ′, y :
[t/x]φ2 ` ψ ≈ [t/x]φ′2 we obtain Γ, [t/x]Γ′, y : [t/x]φ1 ` t̂′1 : [t/x]φ′2 and by applying the
λ-abstraction typing rule we obtain Γ, [t/x]Γ′ ` λy : [t/x]φ1.t̂

′
1 : Πy : [t/x]φ1.[t/x]φ′2 By the

definition of the hereditary substitution function [t/x]φt′ = λy : φ1.[t/x]φt′1 = λy : φ1.t̂
′
1. It

suffices to show that Γ, [t/x]Γ′ ` Πy : [t/x]φ1.[t/x]φ′2 ≈ Πy : [t/x]φ1.[t/x]φ2. We obtain this
by simply applying the substitution for syntactic type equality to (iii) using t.

Case. Suppose t′ ≡ ΛX : ∗l.t′1. Similar to the previous case.

Case. Suppose t′ ≡ t′1 t
′
2. Note that φ′ ≡ [t′2/y]φ′′ for some variable y and type φ′′. We first must

show that there exists types φ1 and φ2 such that

Γ, x : φ,Γ′ ` t′1 : Πy : φ1.φ2,

Γ, x : φ,Γ′ ` t′2 : φ1, and
Γ, x : φ,Γ′ ` [t′2/y]φ′′ ≈ [t′2/y]φ2.

Applying the syntactic inversion lemma to the assumption Γ, x : φ,Γ′ ` t′1 t′2 : φ′ yeilds there
exists types φ1 and φ2, and a term y such that

Γ, x : φ,Γ′ ` t′1 : Πy : φ1.φ2,

Γ, x : φ,Γ′ ` t′2 : φ1, and
Γ, x : φ,Γ′ ` [t′2/y]φ′′ ≈ [t′2/y]φ2.

Now t′ > t′1 and t′ > t′2. So by two applications of part one and two of the induction hypothesis
there exists terms m1 and m2, and types ψ1 and ψ2 such that
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[t/x]φt′1 = m1,
[t/x]t′1  ∗ m1

[t/x]φt′2 = m2,
[t/x]t′2  ∗ m2

Γ, [t/x]Γ′ ` m1 : ψ1,
Γ, [t/x]Γ′ ` m2 : ψ2,
Γ, [t/x]Γ′ ` ψ1 ≈ [t/x](Πy : φ1.φ2), and
Γ, [t/x]Γ′ ` ψ2 ≈ [t/x]φ1.

Now Γ, [t/x]Γ′ ` ψ1 ≈ [t/x](Πy : φ1.φ2) is equivalent to Γ, [t/x]Γ′ ` ψ1 ≈ Πy : [t/x]φ1.[t/x]φ2.
By applying the syntactic conversion lemma to

Γ, [t/x]Γ′ ` m1 : ψ1 and
Γ, [t/x]Γ′ ` m2 : ψ2

using the previous type equality we obtain
(i) Γ, [t/x]Γ′ ` m1 : Πy : [t/x]φ1.[t/x]φ2, and
(ii) Γ, [t/x]Γ′ ` m2 : [t/x]φ1.

We case split on whether or not m1 is a λ-abstraction and t′1 is not, or ctypeφ(x, t′1) is unde-
fined. Suppose m1 is not a λ-abstraction or ctypeφ(x, t′1) is undefined. Then [t/x]φ(t′1 t′2) =
([t/x]φt′1) ([t/x]φt′2) = m1 m2. It suffices to show that

Γ, [t/x]Γ′ ` m1 m2 : φ′′′ and
Γ, [t/x]Γ′ ` φ′′′ ≈ [t/x]φ′

for some φ′′′. By applying the application typing rule to (i) and (ii) we obtain
Γ, [t/x]Γ′ ` m1 m2 : [m2/y]([t/x]φ2), which is equivalent to
Γ, [t/x]Γ′ ` m1 m2 : [t/x]([m2/y]φ2).

At this point it suffices to show that Γ, [t/x]Γ′ ` [t/x]([m2/y]φ2) ≈ [t/x]([t′2/y]φ′′). We
can see from above that Γ, x : φ,Γ′ ` [t′2/y]φ′′ ≈ [t′2/y]φ2 and by Lemma 52 Γ, [t/x]Γ′ `
[t/x]([t′2/y]φ′′) ≈ [t/x]([t′2/y]φ2). By symmetry of Γ, [t/x]Γ′ ` [t/x]([t′2/y]φ′′) ≈ [t/x]([t′2/y]φ2)
we have Γ, [t/x]Γ′ ` [t/x]([t′2/y]φ2) ≈ [t/x]([t′2/y]φ′′). Now we know from above that
[t/x]t′2  ∗ m2 so by applying the join typing rule we obtain Γ, [t/x]Γ′ ` join : [t/x]t′2 = m2.
Finally, by applying TEQ2 we obtain Γ, [t/x]Γ′ ` [t/x]([m2/y]φ2) ≈ [t/x]([t′2/y]φ′′).

Suppose m1 ≡ λy : φ1.m
′
1 and t′1 is not a λ-abstraction. By Lemma 55, Lemma 22, and

Lemma 53 there exists a type ψ such that ctypeφ(x, t′1) = ψ, Γ, x : φ,Γ′ ` ψ ≡ Πy : φ1.φ2,
ψ is a Π-type, ψ is a subexpression of φ, φ >Γ,Γ′ φ1 and φ >Γ,Γ′,y:φ1 φ2. According to the
definition of the hereditary substitution function [t/x]φ(t′1 t′2) = [m2/y]φ1m′1. Recall from
above that we know m2 and m1 are typeable, but we have to show that m′1 is typeable. First,
note that Γ, [t/x]Γ′ ` m1 : Πy : [t/x]φ1.[t/x]φ2 is equivalent to Γ, [t/x]Γ′ ` m1 : Πy : φ1.φ2,
x and m1 have the same type. This implies that Γ, [t/x]Γ′ ` m2 : φ2. By applying the inverison
lemma to Γ, [t/x]Γ′ ` m1 : Πy : φ1.φ2 we obtain the there exists a type φ′2 such that

Γ, [t/x]Γ′, y : φ1 ` m′1 : φ′2 and
Γ, [t/x]Γ′ ` Πy : φ1.φ2 ≈ φ′2.

Now φ >Γ,Γ′ φ1 so we can apply the induction hypothesis to obtain there exists a term m and a
type ψ such that [m2/y]φ1m′1 = m, Γ, [t/x]Γ′ ` m : ψ, and Γ, [t/x]Γ′ ` ψ ≈ [m2/y]φ2. By
syntactic conversion using Γ, [t/x]Γ′ ` ψ ≈ φ2 we have Γ, [t/x]Γ′ ` m : [m2/y]φ2. It suffices
to show that Γ, [t/x]Γ′ ` [m2/y]φ2 ≈ [t/x]([t′2/y]φ′′). We know from above that Γ, x : φ,Γ′ `
[t′2/y]φ′′ ≈ [t′2/y]φ2. By symetery and the substitution for syntactic type equality lemma using
the previous type equality Γ, [t/x]Γ′ ` [t/x]([t′2/y]φ2) ≈ [t/x]([t′2/y]φ′′). We know x is not
free in φ2 so the previous type equality is equivalent to Γ, [t/x]Γ′ ` [t′2/y]φ2 ≈ [t/x]([t′2/y]φ′′).
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Recall from above that [t/x]t′2  ∗ m2 so by applying the join typing rule Γ, [t/x]Γ′ ` join :
[t/x]t′2 = m2. Finally, by applying TEQ2 we obtain Γ, [t/x]Γ′ ` [m2/y]φ2 ≈ [t/x]([t′2/y]φ′′).

Case. Suppose t′ ≡ t′1[φ′′]. Similar to the previous case.

Next we show part two. This is a proof by induction on the lexicorgraphic combination (φ, t′) of >Γ
and the strict subexpression ordering. We case split on the structure of t′.

Case. Suppose t′ is a variable x or y distinct from x. Trivial in both cases.
Case. Suppose t′ ≡ join. Trivial.
Case. Suppose t′ ≡ λy : φ1.t̂. Then we know φ′ ≡ Πy : φ1.φ2 for some type φ2 and [t/x]φ(λy :

φ1.t̂) = λy : φ1.([t/x]φt̂). Now t′ > t̂, but before we can apply the induction hypothesis we first
must show that t̂ is typeable. By inversion on the typing assumption of t′ we know there exists a
type φ′2 such that Γ, x : φ,Γ′, y : φ1 ` t̂ : φ′2 and Γ, x : φ,Γ′ ` Πy : φ1.φ

′
2 ≈ Πy : φ1.φ2. So we

can now apply part one of the induction hypothesis to obtain [t/x]φt̂ has a result and by part two
we know [t/x]t̂ ∗ [t/x]φt̂. At this point we can see that since λy : φ′.[t/x]t̂ ≡ [t/x](λy : φ′.t̂)
and we may conclude that λy : φ′.[t/x]t̂ ∗ λy : φ′.[t/x]φt̂.

Case. Suppose t′ ≡ ΛX : ∗l.t̂. Similar to the previous case.
Case. Suppose t′ ≡ t′1 t

′
2. Now t′ > t′1 and t′ > t′2, but before we can apply the induction hypothesis

we must first show that t′1 and t′2 are typeable. By inverison on the typing assumption of t′ we
know there exists a term y and types φ′1 and φ′2 such that

(i) Γ, x : φ,Γ′ ` t′1 : Πy : φ′1.φ′2,
Γ, x : φ,Γ′ ` t′2 : φ′2, and
Γ, x : φ,Γ′ ` [t′2/y]φ′2 ≈ [t′2/y]φ2,

where φ′ ≡ [t′2/y]φ2. So now we can apply the induction hypothesis. By part one of the
induction hypothesis we know there exists terms t̂′1 and t̂′2 such that [t/x]φt′1 = t̂′1 and [t/x]φt′2 =
t̂′2 and by part two of the induction hypothesis we know [t/x]t′1  ∗ t̂′1 and [t/x]t′2  ∗ t̂′2.

Now we case split on whether or not t̂′1 is a λ-abstraction and t′1 is not, or ctypeφ(x, t′1) is
undefined. Suppose t̂′1 is not a λ-abstraction, or ctypeφ(x, t′1) is undefined. Then [t/x]φt′ =
([t/x]φt′1) ([t/x]φt′2) ≡ t̂′1 t̂

′
2. Thus, [t/x]t′  ∗ [t/x]φt′, because [t/x]t′ = ([t/x]t′1) ([t/x]t′2).

So suppose t̂′1 ≡ λy : φ′1.t̂′′1 and t′1 is not a λ-abstraction. By Lemma 55, Lemma 22, and
Lemma 53 there exists a type ψ such that ctypeφ(x, t′1) = ψ, Γ, x : φ,Γ′ ` ψ ≡ Πy : φ′1.φ′2,
ψ is a Π-type, ψ is a subexpression of φ, φ >Γ,Γ′ φ

′
1 and φ >Γ,Γ′,y:φ1 φ′2. Then by the

definiton of the hereditary substitution function [t/x]φ(t′1 t′2) = [t̂′2/y]φ
′
1 t̂′′1 . Again we must

show that t̂′′1 is typeable before using the induction hypothesis. This is a simple consequence
of applying inversion to (i) above. Thus, we can apply part one of the induction hypothe-
sis to obtain [t̂′2/y]φ

′
1 t̂′′1 has a result and by part two of the induction hypothesis to obtain

[t̂′2/y]t̂′′1  ∗ [t̂′2/y]φ
′
1 t̂′′1 . Now by knowing that (λy : φ′1.t̂′′1) t′2  [t̂′2/y]t̂′′1 and by the pre-

vious fact we know (λy : φ′1.t̂′′1) t′2  ∗ [t̂′2/y]φ
′
1 t̂′′1 . We now make use of the well known result

of full β-reduction. The result is stated as
a ∗ a′

b ∗ b′ a′ b′  ∗ c

a b ∗ c
where a, a′, b, b′, and c are all terms. We apply this result by instantiating a, a′, b, b′, and c with
[t/x]t′1, t̂′1, [t/x]t′2, t̂′2, and [t̂′2/y]φ

′
1 t̂′′1 respectively. Therefore, [t/x](t′1 t′2) ∗ [t̂′2/y]φ

′
1 t̂′′1 .

Case. Suppose t′ ≡ t′1[φ′′]. Then φ′ ≡ [φ′′/X]ψ. Now by inversion on the assumed typing result
of t′ we know there exists a type ψ′ and a term X such that Γ, x : φ,Γ′ ` t′1 : ∀X : ∗l.ψ′,
Γ, x : φ,Γ′ ` ψ′ : ∗l, and Γ, x : φ,Γ′ ` [φ′′/X]ψ ≈ [φ′′/X]ψ′. Since t′ > t′1 and t′1 is typeable
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we can apply the induction hypothesis to obtain [t/x]t′1  ∗ [t′/x]φt′1. We case split on whether
or not [t′/x]φt′1 is a type abstraction and t′1 is not. The case where it is not is trivial so we only
consider the case where [t′/x]φt′1 ≡ ΛX : ∗l.s′. Then [t′/x]φt′ = [φ′/X]s′. Now we have
[t/x]t′1  ∗ [t′/x]φt′1 and [t/x](t′1[φ]) ≡ ([t/x]t′1)[φ]  ∗ ([t′/x]φt′1)[φ]  [φ/X]s′. Thus,
[t/x]t′  ∗ [t′/x]φt′.

B.18 Proof of Corollary 57

We know by Lemma 56 there exists a term t′′ and a type φ′′ such that [t/x]φt′ = t′′, Γ,Γ′ ` t′′ : φ′′,
and Γ,Γ′ ` φ′′ ≈ [t/x]φ′. So by Lemma 16 Γ,Γ′ ` t′′ : [t/x]φ′.

B.19 Proof of Redex Preservation

This is a proof by induction on the lexicorgraphic combination (φ, t′) of>Γ and the strict subexpres-
sion ordering. We case split on the structure of t′ and we do not state explicit typing results when
applying the induction hypothesis. All such results are simple applications of the inversion lemma.

Case. Let t′ ≡ x or t′ ≡ y where y is distinct from x. Trivial.
Case. Suppose t′ ≡ join. Trivial.
Case. Let t′ ≡ λx : φ1.t

′′. Then [t/x]φt′ ≡ λx : φ1.[t/x]φt′′. Now
rset(λx : φ1.t

′′, t) = rset(λx : φ1.t
′′) ∪ rset(t)

= rset(t′′) ∪ rset(t)
= rset(t′′, t).

We know that t′ > t′′ by the strict subexpression ordering, hence by the induction hypothesis
|rset(t′′, t)| ≥ |rset([t/x]φt′′)| which implies |rset(t′, t)| ≥ |rset([t/x]φt′)|.

Case. Let t′ ≡ ΛX : ∗l.t′′. Similar to the previous case.
Case. Let t′ ≡ t′1 t′2. First consider when t′1 is not a λ-abstraction. Then

rset(t′1 t′2, t) = rset(t′1, t′2, t)
Clearly, t′ > t′i for i ∈ {1, 2}, hence, by the induction hypothesis |rset(t′i, t)| ≥ |rset([t/x]φt′i)|.
We have two cases to consider. That is whether or not [t/x]φt′1 is a λ-abstraction or not. Suppose
so. Then by Lemma 4 ctypeφ(x, t′1) = ψ and by inversion on Γ, x : φ,Γ′ ` t′1 t′2 : φ′ there exists
a term j and types φ1 and φ2 such that Γ, x : φ,Γ′ ` t1 : Πj : φ1.φ2, Γ, x : φ,Γ′, j : φ1 ` t2 : φ2
and Γ, x : φ,Γ′ ` φ′ ≈ [t2/j]φ2. Again, by Lemma 4 there exists a type ψ such that
ctypeφ(x, t′1) = ψ, ψ is a subexpression of φ, and Γ, x : φ,Γ′ ` ψ ≈ Πj : φ1.φ2. By Lemma 53
ψ is a Π-type and by Lemma 22 φ >Γ,Γ′ φ1 and φ >Γ,j:φ1 φ2. So by the definition of the
hereditary substitution function [t/x]φt′1 t′2 = [([t/x]φt′2)/y]φ1t′′1 , where [t/x]φt′1 = λy : φ1.t

′′
1 .

Hence,
|rset([t/x]φt′1 t′2)| = |rset([([t/x]φt′2)/y]φ1t′′1)|.

Now φ >Γ,Γ′ φ1 so by the induction hypothesis
|rset([([t/x]φt′2)/y]φ1t′′1)| = |rset([t/x]φt′2, t′′1)|

= |rset(t′2, t′′1 , t)|
≥ |rset(t′2, [t/x]φt′1, t)|
= |rset(t′2, t′1, t)|
= |rset(t′1, t′2, t)|.

Suppose [t/x]φt′1 is not a λ-abstractions or ctypeφ(x, t′1) is undefined. Then
rset([t/x]φ(t′1 t′2)) = rset([t/x]φt′1 [t/x]φt′2)

= rset([t/x]φt′1, [t/x]φt′2).
≤ rset(t′1, t′2, t).

Next suppose t′1 ≡ λy : φ1.t
′′
1 . Then
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rset((λy : φ1.t
′′
1) t′2, t) = {(λy : φ1.t

′′
1) t′2} ∪ rset(t′′1 , t′2, t).

By the definition of the hereditary substitution function,

rset([t/x]φ(λy : φ1.t
′′
1) t′2) = rset([t/x]φ(λy : φ1.t

′′
1) [t/x]φt′2)

= rset((λy : φ1.[t/x]φt′′1) [t/x]φt′2)
= {(λy : φ1.[t/x]φt′′1) [t/x]φt′2} ∪ rset([t/x]φt′′1) ∪ rset([t/x]φt′2).

Since t′ > t′′1 and t′ > t′2 we can apply the induction hypothesis to obtain, |rset(t′′1 , t)| ≥
|rset([t/x]φt′′1)| and |rset(t′2, t)| ≥ |rset([t/x]φt′2)|. Therefore,
|{(λy : φ1.t

′′
1) t′2} ∪ rset(t′′1 , t)∪ rset(t′2, t)| ≥ |{(λy : φ1.[t/x]φt′′1) [t/x]φt′2} ∪ rset([t/x]φt′′1)∪

rset([t/x]φt′2)|.
Case. Suppose t′ ≡ t′1[φ′′]. It suffices to show that |rset(t, t′)| = |rset([t/x]φt′)|. Now

|rset(t, t′)| = |rset(t, t′1[φ′′])|
= |rset(t) ∪ rset(t′1[φ′′])|
= |rset(t) ∪ rset(t′1)|
= |rset(t, t′1)|.

and
|rset[t/x]φt′)| = |rset([t/x]φ(t′1[φ′′]))|.

We have several cases to consider. Suppose t′1 and [t/x]φt′1 are not type abstractions. Then
|rset([t/x]φ(t′1[φ′′]))| = |rset(([t/x]φt′1)[φ′′])|

= |rset([t/x]φt′1)|.
We can see that t′ > t′1 so by the induction hypothesis

|rset([t/x]φt′1)| ≤ |rset(t, t′1)|
= |rset(t, t′)|.

Suppose t′1 ≡ ΛX : ∗l.t′′1 . Then
|rset(t, t′)| = |rset(t, t′1[φ′′])|

= |{t′1[φ′′]} ∪ rset(t, t′′1)|
and

|rset([t/x]φt′)| = |rset([t/x]φ(t′1[φ′′])|
= |rset((ΛX : ∗l.[t/x]φt′′1)[φ′′])|
= |{(ΛX : ∗l.[t/x]φt′′1)[φ′′]} ∪ rset([t/x]φt′′1)|.

Again, t′ > t′1 so by the induciton hypothesis |rset([t/x]φt′′1)| ≤ |rset(t, t′′1). Thus, |rset(t, t′)| ≤
|rset([t/x]φt′)|.

Suppose t′1 ≡ x[φ′′] and t ≡ λX : ∗l.t′′. Then
|rset(t, t′)| = |rset(t)|

= |rset(t′′)|
and

|rset([t/x]φt′)| = |rset([φ′′/X]t′′)|
= |rset(t′′).

Therefore, |rset(t, t′)| = |rset([t/x]φt′)|.

B.20 Proof of Normality Preservation

By Lemma 56 we know there exists a term n′′ such that [n/x]φn′ = n′′ and by Lemma 58
|rset(n′, n)| ≥ |rset([n/x]φn′)|. Hence, |rset(n′, n)| ≥ |rset(t)|, but |rset(n′, n)| = 0. There-
fore, |rset(t)| = 0 which implies n′′ is normal.
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B.21 Proof of Type Substitution for the Interpretation of Types

By the definition of the interpretation of types, Γ, X : ∗l,Γ′ ` n : φ′ and by Lemma 46, Γ, [φ/X]Γ′ `
[φ/X]n : [φ/X]φ′. Finally, by the definition of the interpretation of types, [φ/X]n ∈ [[[φ/X]φ′]]Γ,[φ/X]Γ′ .

B.22 Proof of Semantic Equality

We first prove the left to right containment. Suppose t  ∗ n ∈ [[[t1/x]φ]]Γ. Then by the definition
of the interpretation of types, Γ ` n : [t1/x]φ. By assumption we know Γ ` p : t1 = t2, hence,
by applying the conversion type-checking rule Γ ` n : [t2/x]φ. Finally, by the definition of the
interpretation of types, n ∈ [[[t2/x]φ]]Γ. Therefore, t ∈ [[[t2/x]φ]]Γ. The opposite direction is
similar.

B.23 Proof of Lemma 44

Assume φ >Γ φ
′ for some types φ and φ′. We case split on the form of φ. Clearly, φ is not a type

variable.
Case. Suppose φ ≡ Πx : φ1.φ2. Then φ′ must be of the form φ1 or [t/x]φ2, for some term Γ ` t : φ1.

In both cases we have two cases to consider; either φ and φ′ have the same level or they do not.
Consider the first form and suppose they have the same level. Then it is clear that depth(φ) >
depth(φ′). Now consider the latter form and suppose φ and φ′ have the same level. Then clearly
depth(φ) > depth(φ′). In either form if the level of φ and φ′ are different, then the level of φ is
larger than the level of φ′. In all cases (l, d) > (l′, d′).

Case. Suppose φ ≡ ∀X : ∗l.φ1. Then φ′ must be of the form [φ2/X]φ1 for some type Γ ` φ2 : ∗l. It
is obvious that the level of φ is always larger than the level of φ′. Hence, (l, d) > (l′, d′).

B.24 Proof of Substitution for the Interpretation of Types

It suffices to show that Γ, [n/x]Γ′ ` [n/x]φn′ : [n/x]φ′ and [n/x]φn′ is normal. By Corollary 57
we know Γ, [n/x]Γ′ ` [n/x]φn′ : [n/x]φ′ and by Lemma 59 [n/x]φn′ is normal. Therefore,
[n/x]φn′ ∈ [[[n/x]φ′]]Γ,[n/x]Γ′ .

B.25 Proof of Type Soundness

This is a proof by induction on the structure of the typing derivation of t.
Case.

Γ(x) = φ Γ Ok
Γ ` x : φ

By regularity Γ ` φ : ∗l for some l, hence [[φ]]Γ is nonempty. Clearly, x ∈ [[φ]]Γ by the definition
of the interpretation of types.

Case.

Γ, x : φ1 ` t : φ2

Γ ` λx : φ1.t : Πx : φ1.φ2
By the induction hypothesis and the definition of the interpretation of types t ∈ [[φ2]]Γ,x:φ1 ,
t  ! n ∈ [[φ2]]Γ,x:φ1 and Γ, x : φ1 ` n : φ2. Thus, by applying the λ-abstraction type-
checking rule, Γ ` λx : φ1.n : Πx : φ1.φ2, hence by the definition of the interpretation of types
λx : φ1.n ∈ [[Πx : φ1.φ2]]Γ. Since λx : φ1.t  ! λx : φ1.n ∈ [[Πx : φ1.φ2]]Γ we know by the
definition of the interpretation of types λx : φ1.t ∈ [[Πx : φ1.φ2]]Γ.
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Case.

Γ ` t1 : Πx : φ1.φ2 Γ ` t2 : φ1

Γ ` t1 t2 : [t2/x]φ2
It suffices to show that there exists a normal term n such that t1 t2  ! n ∈ [[[t2/x]φ2]]Γ. By the
induction hypothesis and the definition of the interpretation of types t1  ! n1 ∈ [[Πx : φ1.φ2]]Γ,
Γ ` n1 : Πx : φ1.φ2, t2  ! n2 ∈ [[φ1]]Γ, and Γ ` n2 : φ1. Clearly,

t1 t2  ∗ n1 n2
= [n1/z](z n2),

for some fresh variable z 6∈ FV (n1, n2, φ1, φ2, x). By Lemma 56, Lemma 59, and Corol-
lary 57 [n1/x](z n2)  ∗ [n1/x]φ1(z n2), [n1/x]φ1(z n2) is normal, and Γ ` [n1/x]φ1(z n2) :
[n2/x]φ2. Thus, t1 t2  ! [n1/x]φ1(z n2). It suffices to show that Γ ` [n1/x]φ1(z n2) :
[t2/x]φ2. This is justified by the following typing derivation:

Γ ` t2 : φ1
Γ ` n2 : φ1 n2 ↓ t2

Γ ` join : n2 = t2
JOIN

Γ ` [n1/x]φ1(z n2) : [n2/x]φ2

Γ ` [n1/x]φ1(z n2) : [t2/x]φ2
CONV

Therefore, [n1/x]φ1(z n2) ∈ [[[t2/x]φ2]]Γ which implies that t1 t2 ∈ [[[t2/x]φ2]]Γ.
Case.

t1 ↓ t2 Γ Ok
Γ ` join : t1 = t2

Clearly, join ∈ [[t1 = t2]]Γ by the definition of the interpretation of types.
Case.

Γ ` t0 : t1 = t2 Γ ` t : [t1/x]φ
Γ ` t : [t2/x]φ

By the induction hypothesis, t ∈ [[[t1/x]φ]]Γ. By the definition of the interpretation of types, t !

n ∈ [[[t1/x]φ]]Γ. By assumption we know, Γ ` t0 : t1 = t2. Thus, by Lemma 24, [[[t1/x]φ]]Γ =
[[[t2/x]φ]]Γ. Therefore, n ∈ [[[t2/x]φ]]Γ, hence, by the definition of the interpretation of types,
t ∈ [[[t2/x]φ]]Γ.

Case.

Γ, X : ∗p ` t : φ
Γ ` ΛX : ∗p.t : ∀X : ∗p.φ

By the induction hypothesis, t ∈ [[φ]]Γ,X:∗p , so by the definition of the interpretation of types,
t  ! n ∈ [[φ]]Γ,X:∗p and Γ, X : ∗p ` n : φ. We can apply the Λ-abstraction type-checking rule
to obtain Γ ` ΛX : ∗p.n : ∀X : ∗p.φ, thus ΛX : ∗p.n ∈ [[∀X : ∗p.φ]]Γ. Since ΛX : ∗p.t  !

ΛX : ∗p.n by definition of the interpretation of types ΛX : ∗p.t ∈ [[∀X : ∗p.φ]]Γ.
Case.

Γ ` t : ∀X : ∗l.φ1 Γ ` φ2 : ∗l
Γ ` t[φ2] : [φ2/X]φ1

By the induction hypothesis t ∈ [[∀X : ∗l.φ1]]Γ, so by the definition of the interpretation of types
t  ! n ∈ [[∀X : ∗l.φ1]]Γ and Γ ` n : ∀X : ∗l.φ1. We do a case split on whether or not n is
a Λ-abstraction. We can apply the type-instantiation type-checking rule to obtain Γ ` n[φ2] :
[φ2/X]φ1 and by the definition of the interpretation of types n[φ2] ∈ [[[φ2/X]φ1]]Γ. Therefore,
t ∈ [[[φ2/X]φ1]]Γ. Suppose n ≡ ΛX : ∗l.n′. Then t[φ2]  ∗ (ΛX : ∗l.n′)[φ2]  [φ2/X]n′.
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By semantic inversion n′ ∈ [[φ1]]Γ,X:∗l . Therefore, by Lemma 23 [φ2/X]n′ ∈ [[[φ2/X]φ1]]Γ and
t[φ2] ∈ [[[φ2/X]φ1]]Γ, since t[φ2] ↓ [φ2/X]n′.

C Proofs of Results Pertaining to STLC=

C.1 Miscellaneous Definitions and Results

I Lemma 60 (Weakening for Typing). If Γ ` t : φ then Γ,Γ′ ` t : φ for any context Γ′ that does
not overlap with Γ.

Proof. By straightforward induction on the assumed typing derivation. J

We define a well-founded ordering on types in the following definition. We do not explicitly
prove that this is well-founded, because it is simply the subexpression ordering for types, which is
well known to be well-founded.

I Definition 61. The ordering >Γ is defined as the least relation satisfying the universal closures
of the following formulas:

φ1 → φ2 >Γ φ1

φ1 → φ2 >Γ φ2

φ1 = φ2 >Γ φ1

φ1 = φ2 >Γ φ2

I Definition 62. The following function constructs the set of redexes within a term:

rset(x) = ∅
rset(λx : φ.t) = rset(t)
rset(t1 t2)
= rset(t1, t2) if t1 is not a λ-abstraction.
= {t1 t2} ∪ rset(t′1, t2) if t1 ≡ λx : φ.t′1.

The extention of rset to multiple arguments is defined as follows:

rset(t1, . . . , tn) =def rset(t1) ∪ · · · ∪ rset(tn).

C.2 Properties of the Hereditary Substitution Function

The following are the properties of the ctype function and the hereditary substitution function for
STLC=.

I Lemma 63 (Properties of ctypeφ).
i. If ctypeφ(x, t) = φ′ then head(t) = x and φ′ is a subexpression of φ.

ii. If Γ, x : φ,Γ′ ` t : φ′ and ctypeφ(x, t) = φ′′ then there exists a term p such that Γ, x : φ,Γ′ `
p : φ′ = φ′′.

iii. If Γ, x : φ,Γ′ ` t1 t2 : φ′, Γ ` t : φ, [t/x]φt1 ≡ λy : φ1.q, and t1 is not then there exists a type
ψ such that ctypeφ(x, t1) = ψ.

I Lemma 64 (Total and Type Preserving). Suppose Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′. Then
there exists a term t′′ such that [t/x]φt′ = t′′ and Γ,Γ′ ` t′′ : φ′.

I Lemma 65 (Redex Preserving). If Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′ then |rset(t′, t)| ≥
|rset([t/x]φt′)|.

I Lemma 66 (Normality Preserving). If Γ ` v : φ and Γ, x : φ′ ` v′ : φ′ then there exists a
value v′′ such that [v/x]φv′ = v′′.
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I Lemma 67 (Soundness with Respect to Reduction). If Γ ` t : φ and Γ, x : φ,Γ′ ` t′ : φ′
then [t/x]t′  ∗β [t/x]φt′.

I Corollary 68. If Γ ` t : φ and Γ, x : φ,Γ′ ` t1 t2 : φ2 then ([t/x]φt1) ([t/x]φt2)  ∗β
[t/x]φ(t1 t2).

C.3 Proof of Syntactic Inversion

This is a proof by induction on the form of the assumed typing derivation.
Part i. We have two cases to consider.

Case.

Γ ` φ1 Γ, x : φ1 ` t : φ2

Γ ` λx.t : φ1 → φ2
LAM

Trivial.
Case.

Γ ` λx.t : [φ′1/X](φ1 → φ2) Γ ` t′ : φ1 = φ′2

Γ ` λx.t : [φ′2/X](φ1 → φ2)
CONV

By the induction hypothesis we know Γ, x : [φ′1/X]φ1 ` t : [φ′1/X]φ2 and by an application
of the above rule we obtain Γ, x : [φ′1/X]φ1 ` t : [φ′2/X]φ2. It suffices to show that
Γ, x : [φ′2/X]φ1 ` t : [φ′2/X]φ2. This is a simply consequence of applying Lemma ?? to
Γ, x : [φ′2/X]φ1 ` t : [φ′2/X]φ2 using Γ ` t′ : φ1 = φ′2.

Part ii. Again, we have two cases to consider.
Case.

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
APP

Trivial.
Case.

Γ ` t : [φ1/X]φ Γ ` t′ : φ1 = φ2

Γ ` t : [φ2/X]φ
CONV

By the induction hypothesis there exists a type φ′1, such that, Γ ` t1 : φ′1 → [φ1/X]φ and
Γ ` t2 : φ′1. At this point all we have to do is apply the rule above to Γ ` t1 : φ′1 → [φ1/X]φ
to obtain Γ ` t1 : φ′1 → [φ2/X]φ.

C.4 Proof of Properties of ctypeφ
We prove part one first. This is a proof by induction on the structure of t.

Case. Suppose t ≡ x. Then ctypeφ(x, x) = φ. Clearly, head(x) = x and φ is a subexpression of
itself.

Case. Suppose t ≡ t1 t2. Then ctypeφ(x, t1 t2) = φ′′ when ctypeφ(x, t1) = φ′ → φ′′. Now t > t1
so by the induciton hypothesis head(t1) = x and φ′ → φ′′ is a subexpression of φ. Therefore,
head(t1 t2) = x and certainly φ′′ is a subexpression of φ.

We now prove part two. This is also a proof by induction on the structure of t.
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Case. Suppose t ≡ x. Then ctypeφ(x, x) = φ. Clearly, φ ≡ φ.
Case. Suppose t ≡ t1 t2. Then ctypeφ(x, t1 t2) = φ2 when ctypeφ(x, t1) = φ1 → φ2. By inversion

on the assumed typing derivation we know there exists type φ′′ such that Γ, x : φ,Γ′ ` t1 :
φ′′ → φ′. Now t > t1 so by the induciton hypothesis φ1 → φ2 ≡ φ′′ → φ′. Therefore, φ1 ≡ φ′′
and φ2 ≡ φ′.

Next we prove part three. This is a proof by induction on the structure of t1 t2.

The only possiblities for the form of t1 is x or a t̂1 t̂2. All other forms would not result in [t/x]φt1
being a λ-abstraction and t1 not. If t1 ≡ x then there exist a type φ′′ such that φ ≡ φ′′ → φ′ and
ctypeφ(x, x t2) = φ′ when ctypeφ(x, x) = φ ≡ φ′′ → φ′ in this case. We know φ′′ to exist by
inversion on Γ, x : φ,Γ′ ` t1 t2 : φ′.

Now suppose t1 ≡ (t̂1 t̂2). Now knowing t′1 to not be a λ-abstraction implies that t̂1 is also not
a λ-abstraction or [t/x]φt1 would be an application instead of a λ-abstraction. So it must be the
case that [t/x]φt̂1 is a λ-abstraction and t̂1 is not. Since t1 t2 > t1 we can apply the induction
hypothesis to obtain there exists a type ψ such that ctypeφ(x, t̂1) = ψ. Now by inversion on Γ, x :
φ,Γ′ ` t1 t2 : φ′ we know there exists a type φ′′ such that Γ, x : φ,Γ′ ` t1 : φ′′ → φ′. We know
t1 ≡ (t̂1 t̂2) so by inversion on Γ, x : φ,Γ′ ` t1 : φ′′ → φ′ we know there exists a type ψ′′ such that
Γ, x : φ,Γ′ ` t̂1 : ψ′′ → (φ′′ → φ′). By part two of Lemma 63 we know ψ ≡ ψ′′ → (φ′′ → φ′)
and ctypeφ(x, t1) = ctypeφ(x, t̂1 t̂2) = φ′′ → φ′ when ctypeφ(x, t̂1) = ψ′′ → (φ′′ → φ′), which
holds because we know ctypeφ(x, t̂1) = ψ.

C.5 Proof of Total and Type Preserving

This is a proof by induction on the lexicorgraphic combination (φ, t′) of >Γ,Γ′ and the strict subex-
pression ordering. We case split on t′.

Case. Suppose t′ is either x or a variable y distinct from x. Trivial in both cases.
Case. Suppose t′ ≡ λy : φ1.t

′
1. By inversion on the typing judgement we know there exists a type φ2

such that Γ, x : φ,Γ′, y : φ1 ` t′1 : φ2. We also know t′ > t′1, hence we can apply the induction
hypothesis to obtain [t/x]φt′1 = t̂′1 and Γ,Γ′, y : φ1 ` t̂ : φ2 for some term t̂′1. By the definition
of the hereditary substitution function [t/x]φt′ = λy : φ1.[t/x]φt′1 = λy : φ1.t̂

′
1. It suffices to

show that Γ,Γ′ ` λy : φ1.t̂
′
1 : φ1 → φ2. By simply applying the λ-abstraction typing rule using

Γ,Γ′, y : φ1 ` t̂ : φ2 we obtain Γ,Γ′ ` λy : φ1.t̂
′
1 : φ1 → φ2.

Case. Suppose t′ ≡ t′1 t
′
2. By inversion we know Γ, x : φ,Γ′ ` t′1 : φ′′ → φ′ and Γ, x : φ,Γ′ `

t′2 : φ′′ for some type φ′′. Clearly, t′ > t′i for i ∈ {1, 2}. Thus, by the induction hypothesis
there exists terms m1 and m2 such that [t/x]φt′i = mi, Γ,Γ′ ` m1 : φ′′ → φ′ and Γ,Γ′ `
m2 : φ′′ for i ∈ {1, 2}. We case split on whether or not m1 is a λ-abstraction, t′1 is not, or
ctypeφ(x, t′1) is undefined. We only consider the non-trivial cases when m1 ≡ λy : φ′′.m′1
and t′1 is not a λ-abstraction. Now by Lemma 63 it is the case that there exists a ψ such that
ctypeφ(x, t′1) = ψ, ψ ≡ φ′′ → φ′, and ψ is a subexpression of φ, hence φ >Γ,Γ′ φ

′′. Then
[t/x]φ(t′1 t′2) = [m2/y]φ

′′
m′1. Therefore, by the induction hypothesis there exists a term m such

that [m2/y]φ
′′
m′1 = m and Γ,Γ′ ` m : φ′′.

C.6 Proof of Redex Preservervation

This is a proof by induction on the lexicorgraphic combination (φ, t′) of >Γ,Γ′ and the strict subex-
pression ordering. We case split on the structure of t′. We do not explicitly state typind results that
are simple conseqences of inversion.
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Case. Let t′ ≡ x or t′ ≡ y where y is distinct from x. Trivial.
Case. Let t′ ≡ λx : φ1.t

′′. Then [t/x]φt′ ≡ λx : φ1.[t/x]φt′′. Now
rset(λx : φ1.t

′′, t) = rset(λx : φ1.t
′′) ∪ rset(t)

= rset(t′′) ∪ rset(t)
= rset(t′′, t).

We know that t′ > t′′ by the strict subexpression ordering, hence by the induction hypothesis
|rset(t′′, t)| ≥ |rset([t/x]φt′′)| which implies |rset(t′, t)| ≥ |rset([t/x]φt′)|.

Case. Let t′ ≡ t′1 t′2. First consider when t′1 is not a λ-abstraction. Then
rset(t′1 t′2, t) = rset(t′1, t′2, t)

Clearly, t′ > t′i for i ∈ {1, 2}, hence, by the induction hypothesis |rset(t′i, t)| ≥ |rset([t/x]φt′i)|.
We have two cases to consider. That is whether or not [t/x]φt′1 is a λ-abstraction or not. Suppose
so. Then by Lemma 63 ctypeφ(x.t′1) = ψ and by inversion on Γ, x : φ,Γ′ ` t′1 t′2 : φ′ there
exists a type φ′′ such that Γ, x : φ,Γ′ ` t1 : φ′′ → φ′. Again, by Lemma 63 ψ ≡ φ′′ → φ′.
Thus, ctypeφ(x, t′1) = φ′′ → φ′ and φ′′ → φ′ is a subexpression of φ. So by the definition of the
hereditary substitution function [t/x]φt′1 t′2 = [([t/x]φt′2)/y]φ

′′
t′′1 , where [t/x]φt′1 = λy : φ′′.t′′1 .

Hence,
|rset([t/x]φt′1 t′2)| = |rset([([t/x]φt′2)/y]φ

′′
t′′1)|.

Now φ >Γ,Γ′ φ
′′ so by the induction hypothesis
|rset([([t/x]φt′2)/y]φ

′′
t′′1)| = |rset([t/x]φt′2, t′′1)|

= |rset(t′2, t′′1 , t)|
≥ |rset(t′2, [t/x]φt′1, t)|
= |rset(t′2, t′1, t)|
= |rset(t′1, t′2, t)|.

Suppose [t/x]φt′1 is not a λ-abstractions or ctypeφ(x, t′1) is undefined. Then
rset([t/x]φ(t′1 t′2)) = rset([t/x]φt′1 [t/x]φt′2)

= rset([t/x]φt′1, [t/x]φt′2).
≤ rset(t′1, t′2, t).

Next suppose t′1 ≡ λy : φ1.t
′′
1 . Then

rset((λy : φ1.t
′′
1) t′2, t) = {(λy : φ1.t

′′
1) t′2} ∪ rset(t′′1 , t′2, t).

By the definition of the hereditary substitution function,

rset([t/x]φ(λy : φ1.t
′′
1) t′2) = rset([t/x]φ(λy : φ1.t

′′
1) [t/x]φt′2)

= rset((λy : φ1.[t/x]φt′′1) [t/x]φt′2)
= {(λy : φ1.[t/x]φt′′1) [t/x]φt′2} ∪ rset([t/x]φt′′1) ∪ rset([t/x]φt′2).

Since t′ > t′′1 and t′ > t′2 we can apply the induction hypothesis to obtain, |rset(t′′1 , t)| ≥
|rset([t/x]φt′′1)| and |rset(t′2, t)| ≥ |rset([t/x]φt′2)|. Therefore,
|{(λy : φ1.t

′′
1) t′2} ∪ rset(t′′1 , t)∪ rset(t′2, t)| ≥ |{(λy : φ1.[t/x]φt′′1) [t/x]φt′2} ∪ rset([t/x]φt′′1)∪

rset([t/x]φt′2)|.

C.7 Proof of Normality Preservation

By Lemma 64 we know there exists a term n′′ such that [n/x]φn′ = t and by Lemma 65 |rset(n′, n)| ≥
|rset([n/x]φn′)|. Hence, |rset(n′, n)| ≥ |rset(t)|, but |rset(n′, n)| = 0. Therefore, |rset(t)| = 0
which implies n′′ has no redexes. Therefore, n′′ is normal.

C.8 Proof of Soundness with Respect to Reduction

This is a proof by induction on the lexicorgraphic combination (φ, t′) of>Γ and the strict subexpres-
sion ordering. We case split on the structure of t′. When applying the induction hypothesis we must
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show that the input terms to the substitution and the hereditary substitution functions are typeable.
We do not explicitly state typing results that are simple conseqences of inversion.

Case. Suppose t′ is a variable x or y distinct from x. Trivial in both cases.
Case. Suppose t′ ≡ λy : φ′.t̂. Then [t/x]φ(λy : φ′.t̂) = λy : φ′.([t/x]φt̂). Now t′ > t̂ so we can

apply the induction hypothesis to obtain [t/x]t̂  ∗β [t/x]φt̂. At this point we can see that since
λy : φ′.[t/x]t̂ ≡ [t/x](λy : φ′.t̂) and we may conclude that λy : φ′.[t/x]t̂ ∗β λy : φ′.[t/x]φt̂.

Case. Suppose t′ ≡ t′1 t
′
2. By Lemma 64 there exists terms t̂′1 and t̂′2 such that [t/x]φt′1 = t̂′1 and

[t/x]φt′2 = t̂′2. Since t′ > t′1 and t′ > t′2 we can apply the induction hypothesis to obtain
[t/x]t′1  ∗β t̂′1 and [t/x]t′2  ∗β t̂′2. Now we case split on whether or not t̂′1 is a λ-abstraction and
t′1 is not, ctypeφ(x, t′1) is undefined, or t̂′1 is not a λ-abstraction. If ctypeφ(x, t′1) is undefined
or t̂′1 is not a λ-abstraction then [t/x]φt′ = ([t/x]φt′1) ([t/x]φt′2) ≡ t̂′1 t̂

′
2. Thus, [t/x]t′  ∗β

[t/x]φt′, because [t/x]t′ = ([t/x]t′1) ([t/x]t′2). So suppose t̂′1 ≡ λy : φ′.t̂′′1 and t′1 is not a
λ-abstraction. By Lemma 63 there exists a type ψ such that ctypeφ(x, t′1) = ψ, ψ ≡ φ′′ → φ′,
and ψ is a subexpression of φ, where by inversion on Γ, x : φ,Γ′ ` t′ : φ′ there exists a type
φ′′ such that Γ, x : φ,Γ′ ` t′1 : φ′′ → φ′. Then by the definiton of the hereditary substitution
function [t/x]φ(t′1 t′2) = [t̂′2/y]φ

′
t̂′′1 . Now we know φ >Γ,Γ′ φ

′ so we can apply the induction
hypothesis to obtain [t̂′2/y]t̂′′1  ∗β [t̂′2/y]φ

′
t̂′′1 . Now by knowing that (λy : φ′.t̂′′1) t′2  β [t̂′2/y]t̂′′1

and by the previous fact we know (λy : φ′.t̂′′1) t′2  ∗β [t̂′2/y]φ
′
t̂′′1 . We now make use of the well

known result of full β-reduction. The result is stated as
a ∗β a

′

b ∗β b
′ a′ b′  ∗β c

a b ∗β c
where a, a′, b, b′, and c are all terms. We apply this result by instantiating a, a′, b, b′, and c with
[t/x]t′1, t̂′1, [t/x]t′2, t̂′2, and [t̂′2/y]φ

′
t̂′′1 respectively. Therefore, [t/x](t′1 t′2) ∗β [t̂′2/y]φ

′
t̂′′1 .

C.9 Proof of Corollary 68

We have two cases to consider.
Case. Suppose ([t/x]φt1) is not a λ-abstraction or ([t/x]φt1) and t1 are λ-abstractions, or ctypeφ(x, t1)

is undefined. Then ([t/x]φt1) ([t/x]φt2) = [t/x]φ(t1 t2).
Case. Suppose ([t/x]φt1) ≡ λy : φ1.s

′
1 for some y and s′1, and ctypeφ(x, t1) = φ1 → φ2. Then

([t/x]φt1) ([t/x]φt2) = (λy : φ1.s
′
1) ([t/x]φt2) [([t/x]φt2)/y]s′1. By Lemma 67 [([t/x]φt2)/y]s′1  ∗β

[([t/x]φt2)/y]φ1s′1, but in this case [t/x]φ(t1 t2) = [([t/x]φt2)/y]φ1s′1. Therefore, ([t/x]φt1) ([t/x]φt2) ∗β
[t/x]φ(t1 t2).

C.10 Proof of Semantic Equality

We proceed by induction on the form of n.

Case. Suppose n ≡ x. Then by the definition of the interpretation of types, there exists a type φ′ and
a proof p′ such that Γ ` p′ : [φ1/X]φ = φ′, Γ ` x : φ′ and Γ(x) = φ′. It suffices to show
Γ ` p′ : [φ2/X]φ = φ′. We know Γ ` p′ : [φ1/X]φ = φ′ and Γ ` p : φ1 = φ2. Thus, by
applying Conv, Γ ` p′ : [φ2/X]φ = φ′. Therefore, n ∈ [[[φ2/X]φ]]Γ.

Case. Let n ≡ λx.t. By the definition of the interpretation of types, Γ ` λx.t : [φ1/X]φ and there
exists a types φ′1 and φ′2 and a proof p′ such that Γ ` p′ : [φ1/X]φ = φ′1 → φ′2 and if
Γ, x : φ′1 is consistent then t ∈ [[φ′2]]Γ,x:φ′1 . It suffices to show that Γ ` λx.t : [φ2/X]φ and
Γ ` p′ : [φ2/X]φ = φ′1 → φ′2. Both of these can be obtained by applying Conv using the
assumed proof p. Therefore, n ∈ [[[φ2/X]φ]]Γ.
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Case. Let n ≡ join. Then by the definition of the interpretation of types, Γ ` join : [φ1/X]φ and
there exists a type φ′ and φ′′ and a proof p′, such that Γ ` p′ : [φ1/X]φ = (φ′ = φ′′) and for all
substitutions σ : Γ we have σ φ′ ≡ σ φ′′. By applying Conv to Γ ` join : [φ1/X]φ we obtain
Γ ` join : [φ2/X]φ and by applying it again using Γ ` p′ : [φ1/X]φ = (φ′ = φ′′) we obtain
Γ ` p′ : [φ2/X]φ = (φ′ = φ′′). It suffices to show that there exists a type φ̂ and φ̂′ and a proof
p̂, such that Γ ` p̂ : [φ2/X]φ = (φ̂ = φ̂′) and for all substitutions σ : Γ we have σ φ̂ ≡ σ φ̂′.
Choose φ′, φ′′, and p′ for φ̂, φ̂′, p̂ respectively.

Case. Let n ≡ n1 n2. By the definition of the interpretation of types, Γ ` n1 n2 : [φ1/X]φ and there
exists a type φ′ such that n1 ∈ [[φ′ → [φ1/X]φ]]Γ and n2 ∈ [[φ′]]Γ. By applying Conv we obtain
Γ ` n1 n2 : [φ2/X]φ. It suffices to show that n1 ∈ [[φ′ → [φ2/X]φ]]Γ. We can see that [[φ′ →
[φ1/X]φ]]Γ ≡ [[[φ1/X](φ′ → φ)]]Γ. By the induction hypothesis, n1 ∈ [[[φ2/X](φ′ → φ)]]Γ ≡
[[φ′ → [φ2/X]φ]]Γ. Thus, n ∈ [[[φ2/X]φ]]Γ.

C.11 Proof of Weakening for the Interpretation of Types

Suppose Γ′ is a context which does not overlap with Γ. We need to consider the cases when Γ,Γ′
is consistent and when it is not consistent. Suppose it is. Then the result follows by straightforward
induction on the form of v and weakening for typing.

Suppose Γ,Γ′ is inconsistent. Then either Γ is inconsistent or Γ′ is inconsistent. Suppose the former.
Then the result easily follows by induction on the form of v and weakening for typing. Finally,
suppose Γ is consistent and Γ′ is inconsistent. By assumption we know v ∈ [[φ]]Γ. We prove this
case by induction on the form of v.

Case. Suppose v is a variable. Trivial.
Case. Suppose v ≡ join. Then by the definition of the interpretation of types we know Γ ` join : φ

and there exists types φ′, φ′′, and a term p such that Γ ` p : φ = (φ′ = φ′′) and ∀σ : Γ.σφ′ ≡
σφ′′. It suffices to show that Γ,Γ′ ` join : φ and there exists types ψ′, ψ′′, and a term p′ such
that Γ,Γ′ ` p′ : φ = (ψ′ = ψ′′) and ∀σ′ : Γ,Γ′.σ′ψ′ ≡ σ′ψ′′. The first two results hold by
weakening for typing on the previous facts. The third result holds by first choosing φ′ and φ′′

for ψ′ and ψ′′ and then taking the substitution σ above and then combining it with the identity
substitution σ′′ : Γ′. That is choose σ′ = σ ∪ σ′. We choose the ideenity because we know
Γ and Γ′ do not overlap so φ′ and φ′′ cannot possibly depend on variables in Γ′. Therefore,
v ∈ [[φ]]Γ,Γ′ .

Case. Suppose v ≡ λx.t. Now by assumption Γ is consistent and Γ′ is inconsistent hence Γ,Γ′ is incon-
sistent. Thus, all we must conclude to obtain our result is Γ,Γ′ ` λx.t : φ ∧∃(φ1, φ2, p).(Γ,Γ′ `
p : φ = φ1 → φ2). These follow from our assumption that v ∈ [[φ]]Γ and weakening for typing.

Case. Suppose v ≡ s v′. The results holds by using the induction hypothesis, the assumption that
v ∈ [[φ]]Γ, and weakening for typing.

C.12 Proof of Hereditary Substitution for the Interpretation of Types

This is a proof by induction on our usual ordering (φ, v′).
Case. Suppose v′ is a variable. Trivial.
Case. Suppose v′ ≡ s v′′. By assumption s v′′ ∈ [[φ′]]Γ,x:φ,Γ′ hence by the definition of the interpreta-

tion of types s ∈ [[φ′′ → φ′]]Γ,x:φ,Γ′ and v′′ ∈ [[φ′′]]Γ,x:φ,Γ′ for some type φ′′. By the induction
hypothesis we know [v/x]φs ∈ [[φ′′ → φ′]]Γ,Γ′ and [v/x]φv′′ ∈ [[φ′′]]Γ,Γ′ . We have two cases to
consider.

Case. Suppose ([v/x]φs) is not a λ-abstraction or ([v/x]φs) and s are λ-abstractions, or ctypeφ(x, s)
is undefined. Then ([v/x]φs) ([v/x]φv′′) is a value and ([v/x]φs) ([v/x]φv′′) ∈ [[φ′]]Γ,Γ′ .



Harley Eades and Aaron Stump 65

Case. Suppose ([v/x]φs) ≡ λy : φ′′.s′ for some y and s′, and ctypeφ(x, s) = φ′′ → φ′. Then
([v/x]φs) ([v/x]φv′′) β [([v/x]φv′′)/y]s′. By Lemma 67
[([v/x]φv′′)/y]s′  ∗β [([v/x]φv′′)/y]φ′′s′ and by Lemma 63 φ′′ → φ′ is a subexpression of
φ hence φ >Γ,Γ′ φ

′′. Thus, by the induction hypothesis [([v/x]φv′′)/y]φ′′s′ ∈ [[φ′]]Γ,Γ′ .
Case. Suppose v′ ≡ λx.t′. By assumption λy.t′ ∈ [[φ′]]Γ,x:φ,Γ′ . From this we know several facts, first

that Γ, x : φ,Γ′ ` λy.t′ : φ′, and second that there exists a term p and types φ1 and φ2 such
that Γ, x : φ,Γ′ ` p : φ′ = φ1 → φ2 and if Con(Γ, x : φ,Γ′) holds then t′ ∈ [[φ1]]Γ,x:φ,Γ,y:φ1 .
Regardless of the consistency of Γ, x : φ,Γ′ we must first show that Γ,Γ′ ` [t/x]φv′ : φ′ and
there exists a proof and types p′, φ′1 and φ′2 such that Γ,Γ′ ` p′ : φ′ = φ′1 → φ′2. Both of
these results are obtainable from Lemma 63. To obtain the second we can choose the term p

and types φ1 and φ2 from above and apply the hereditary substitution function to p to obtain
Γ,Γ′ ` [t/x]φp : φ′ = φ1 → φ2. To conclude this case have two final cases to consider, whether
or not Γ, x : φ,Γ′ is consistent.

Clearly, if Γ, x : φ,Γ′ is inconsistent then we know [t/x]φ(λy.t′) = λy.[t/x]φt′ ∈ [[φ′]]Γ,Γ′ ,
becuase λy.[t/x]φt′ is a value, Γ,Γ′ ` [t/x]φv′ : φ′, and Γ,Γ′ ` [t/x]φp : φ′ = φ1 → φ2.

It suffices to show that [t/x]φt′ ∈ [[φ2]]Γ,Γ′,y:φ1 when Γ, x : φ,Γ′ is consistent. Suppose
Γ, x : φ,Γ′ is consistent. Then by the definition of the interpretation of types we know t′ ∈
[[φ2]]Γ,x:φ,Γ′,y:φ1 . Since t′ is a strict subexpression of v′ we can apply the induction hypothesis
to obtain [t/x]φt′ ∈ [[φ2]]Γ,Γ′,y:φ1 .

Finally, all cases lead to the conclusion that [t/x]φv′ ∈ [[φ′]]Γ,Γ′ .

C.13 Proof of Type Soundness

This is a proof by induction on the form of the assumed typing derivation. We implicitly use the fact
that for each case Γ ` t : φ implies there exists a proof p such that Γ ` p : φ = φ throughout the
entire proof.

Case.

Γ(x) = φ

Γ ` x : φ
By assumption we know Γ ` x : φ and Γ(x) = φ, thus by the definition of the interpretation of
types, x ∈ [[φ]]Γ.

Case.

Γ ` φ1 Γ, x : φ1 ` t : φ2

Γ ` λx.t : φ1 → φ2

We have two cases to consider, when Γ, x : φ1 is consistent and when it is not. Consider the latter.
Then by the definition of the interpretation of types, λx.t ∈ [[φ1 → φ2]]Γ. Now assume Γ, x : φ1
is consistent. Then by the definition of the interpretation of types and the induction hypothesis,
t ∈ [[φ2]]Γ,x:φ1 . Finally, by the definition of the interpretation of types, λx.t ∈ [[φ1 → φ2]]Γ.

Case.

Γ ` t1 : φ1 → φ2 Γ ` t2 : φ1

Γ ` t1 t2 : φ2
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By the induction hypothesis, t1[[φ1 → φ2]]Γ and t1[[φ1]]Γ. Thus, there exists values v1 and v2 such
that t1  ∗β v1 ∈ [[φ1 → φ2]]Γ and t2  ∗β v2 ∈ [[φ1]]Γ. Choose a variable x fresh in both t1 and
t2. Then we know that by the definition of the interpretation of types (x v2) ∈ [[φ2]]Γ,x:φ1→φ2 .
Now we know the following:

[t1/x](x t2)  ∗β [v1/x](x v2)
 ∗β [v1/x]φ1→φ2(x v2).

The previous fact holds by β-reduction and Lemma 67. Finally, by Lemma 32 [v1/x]φ1→φ2(x v2) ∈
[[φ2]]Γ. Therefore, t1 t2 ∈ [[φ2]]Γ.

Case.

Γ ` join : φ = φ

Trivial.
Case.

Γ ` t : [φ1/X]φ Γ ` t′ : φ1 = φ2

Γ ` t : [φ2/X]φ
By the induction hypothesis, t ∈ [[[φ1/X]φ]]Γ. We know by assumption that Γ ` t′ : φ1 = φ2,
thus by Lemma 30, t ∈ [[[φ2/X]φ]]Γ.
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