
Dialectica Categories for the Lambek Calculus

Valeria de Paiva1 and Harley Eades III2

1 Nuance Communications, Sunnyvale, CA, valeria.depaiva@gmail.com
2 Computer Science, Augusta University, Augusta, GA, harley.eades@gmail.com

Abstract. We revisit the old work of de Paiva on the models of the
Lambek Calculus in dialectica models making sure that the syntactic
details that were sketchy on the first version got completed and verified.
We extend the Lambek Calculus with a κ modality, inspired by Yetter’s
work, which makes the calculus commutative. Then we add the of-course
modality !, as Girard did, to re-introduce weakening and contraction for
all formulas and get back the full power of intuitionistic and classical
logic. We also present the categorical semantics, proved sound and com-
plete. Finally we show the traditional properties of type systems, like
subject reduction, the Church-Rosser theorem and normalization for the
calculi of extended modalities, which we did not have before.

Keywords: Lambek calculus, dialectica models, categorical semantics,
type theory, structural rules, non-commutative, linear logic

Introduction

Lambek introduced his homonymous calculus (originally called the ‘Syntactic
Calculus’) for proposed applications in Linguistics. However the calculus got
much of its cult following and reputation by being a convenient, well-behaved
prototype of a Gentzen sequent calculus without any structural rules.

This note recalls a Dialectica model of the Lambek Calculus presented by
the first author in the Amsterdam Colloquium in 1991 [10]. Here, like then, we
approach the Lambek Calculus from the perspective of Linear Logic, so we are
interested in the basic sequent calculus with no structural rules, except asso-
ciativity of tensors. In that earlier work we took for granted the syntax of the
calculus and only discussed the exciting possibilities of categorical models of
linear-logic-like systems. Many years later we find that the work on models is
still interesting and novel, and that it might inform some of the most recent work
on the relationship between categorial grammars and notions of distributional
semantics [8].

Moreover, using the Agda proof assistant [6] we verify the correctness of our
categorical model (Section 4.1), and we add the type theoretical (Section 5)
notions that were left undiscussed in the Amsterdam Colloquium presentation.
All of the syntax in this paper was checked using Ott [23]. The goal is to show
that our work can shed new light on some of the issues that remained open.
Mostly we wanted to check the correctness of the semantic proposals put forward

since Szabo’s seminal book [24] and, for future work, on the applicability and fit
of the original systems to their intended uses.

Overview. The Syntactic Calculus was first introduced by Joachim Lambek
in 1958 [19]. Since then the rechristened Lambek Calculus has had as its main
motivation providing an explanation of the mathematics of sentence structure,
starting from the author’s algebraic intuitions. The Lambek Calculus is the core
of logical Categorial Grammar. The first use of the term “categorial grammar”
seems to be in the title of Bar-Hillel, Gaifman and Shamir (1960), but categorial
grammar began with Ajdukiewicz (1935) quite a few years earlier. After a period
of ostracism, around 1980 the Lambek Calculus was taken up by logicians inter-
ested in Computational Linguistics, especially the ones interested in Categorial
Grammars.

The work on Categorial Grammar was given a serious impulse by the advent
of Girard’s Linear Logic at the end of the 1980s. Girard [12] showed that there
is a full embedding, preserving proofs, of Intuitionistic Logic into Linear Logic
with a modality “!”. This meant that Linear Logic, while paying attention to
resources, could always code up faithfully Classical Logic and hence one could,
as Girard put it, ‘have one’s cake and eat it’, paying attention to resources, if
desired, but always forgetting this accounting, if preferred. This meant also that
several new systems of resource logics were conceived and developed and these
refined resource logics were applied to several areas of Computer Science.

In Computational Linguistics, the Lambek Calculus has seen a significant
number of works written about it, apart from a number of monographs that
deal with logical and linguistic aspects of the generalized type-logical approach.
For a shorter introduction, see Moortgat’s entry on the Stanford Encyclopedia of
Philosophy on Type Logical Grammar [20]. Type Logical Grammar situates the
type-logical approach within the framework of Montague’s Universal Grammar
and presents detailed linguistic analyses for a substantive fragment of syntactic
and semantic phenomena in the grammar of English. Type Logical Semantics
offers a general introduction to natural language semantics studied from a type-
logical perspective.

This meant that a series of systems, implemented or not, were devised that
used the Lambek Calculus or its variants as their basis. These systems can be as
expressive as Intuitionistic Logic and the claim is that they are more precise i.e.
they make finer distinctions. Some of the landscape of calculi can be depicted as
follows:

From the beginning it was clear that the Lambek Calculus is the multiplica-
tive fragment of non-commutative Intuitionistic Linear Logic. In the diagrams L
stands for the Lambek Calculus, as expounded in [19] but with the unit I added
for the tensor connective (there was a certain amount of dispute on that, as the
original system did not introduce the constant corresponding to the nullary case
of the tensor product, here written as I). The system LP is the Lambek Calculus
with permutation, sometimes called the van Benthem calculus. We are calling
LA the Lambek Calculus with additives, the more usual algebraic connectives
corresponding to meet and join. Hence adding both permutation and additives
to the Lambek Calculus we get to intuitonistic linear logic. On the other diagram
to the Lambek Calculus with permutation we add either weakening (LPweak) or
contraction LPcont) or both to get the implicational fragment of Intuitionsitic
Propositional Logic.

The Lambek Calculus also has the potential for many applications in other
areas of computer science, such as, modeling processes. Linear Logic has been
at the forefront of the study of process calculi for many years [14,22,1]. We can
think of the commutative tensor product of linear logic as a parallel operator.
For example, given a process A and a process B , then we can form the process
A⊗ B which runs both processes in parallel. If we remove commutativity from
the tensor product we obtain a sequential composition instead of parallel com-
position. That is, the process AB B first runs process A and then process B in
that order. Paraphrasing Vaughan Pratt, “The sequential composition operation
has no evident counterpart in type theory” see page 11 of [22]. We believe that
the Lambek Calculus will lead to filling this hole, and the results of this paper
as a means of obtaining a theory with both a parallel operator and a sequen-
tial composition operator. This work thus has a potential to impact research
in programming languages and computer security where both linear logic and
sequential composition play important roles.

There are several interesting questions, considered for Linear Logic, that
could also be asked of the Lambek Calculus or its extensions. One of them,
posed by Morrill et al is whether we can extend the Lambek Calculus with a
modality that does for the structural rule of (exchange) what the modality of
course ‘!’ does for the rules of (weakening) and (contraction). A preliminary
proposal, which answers this question affirmatively, is set forward in this paper.

The answer was provided in semantical terms in the first version of this work.
Here we provide also the more syntactic description of these modalities. Building
up from work of Ciabattoni, Galatos and Terui in [7] and others that describe
how to transform systems of axioms into cut-free sequent rules, we aim to refine
the algebraization of proof theory.

1 Related Work

Lamarche and Retoré [18] give an overview of proof nets for the Lambek Calculus
where they discuss the addition of various exchange rules to the calculus. For
example, the following permutation and cycle rules:

A1, A2, Γ ` B
A2, A1, Γ ` B

perm
A1, A2, Γ ` B
A1, Γ, A2, Γ ` B

cycl

Taken in isolation each rule does not imply general exchange, but taken together
they do. Thus, it is possible to take a restricted notion of exchange to the Lam-
bek Calculus without taking general exchange. However, applications where one
needs a completely non-commutative tensor product and a commutative tensor
product cannot be modeled in the Lambek Calculus with these rules.

Polakow and Pfenning [21] combine intuitionistic, commutative linear, and
non-commutative linear logic into a system called Ordered Linear Logic (OLL).
Polakow and Pfenning then extend OLL into two new systems: a term assignment
of OLL called OLLi, and a logical framework in the tradition of LF called OLF.

OLL’s sequent is of the form Γ,∆,Ω ` A where Γ is a multiset of intu-
itionistic assumptions, ∆ is a multiset of commutative linear assumptions, and
Ω is a list of non-commutative linear assumptions. Furthermore, OLL contains
logical connectives from each logic. For example, there are two different tensor
products and three different implications. Thus, the systems developed here are
a simplification of OLL showing how to get all of these systems using modalities.

Greco and Palmigiano [13] give a type of logic called a proper display logic
for the Lambek Calculus with exponentials. However, they decompose the linear
exponential into an adjunction in the spirit Benton’s LNL models. In this paper
we concentrate on sequent calculi rather than display logic.

2 The Lambek Calculus

The Lambek Calculus, formerly the Syntactic Calculus L, due to J. Lambek [19],
was created to capture the logical structure of sentences. Lambek introduced
what we think of as a substructural logic with an operator denoting concate-
nation, A ⊗ B , and two implications relating the order of phrases, A ↼ B and
A ⇀ B . The first implication corresponds to a phrase of type A when followed
by a phrase of type B , and the second is a phrase of type B when preceded by
a phrase of type A.

The Lambek Calculus, defined in Figure 1, can be presented as a non-
commutative intuitionistic multiplicative linear logic. Contexts are sequences
of formulas, and we denote mapping the modalities over an arbitrary context by
!Γ and κΓ .

A ` A
ax · ` I Ur

Γ2 ` A Γ1,A, Γ3 ` B

Γ1, Γ2, Γ3 ` B
cut

Γ1, Γ2 ` A

Γ1, I, Γ2 ` A
Ul

Γ,A,B , Γ ′ ` C

Γ,A⊗ B , Γ ′ ` C
Tl

Γ1 ` A Γ2 ` B

Γ1, Γ2 ` A⊗ B
Tr

Γ2 ` A Γ1,B , Γ3 ` C

Γ1,A⇀ B , Γ2, Γ3 ` C
IRl

Γ2 ` A Γ1,B , Γ3 ` C

Γ1, Γ2,B ↼ A, Γ3 ` C
ILl

Γ,A ` B

Γ ` A⇀ B
IRr

A, Γ ` B

Γ ` B ↼ A
ILr

Fig. 1. The Lambek Calculus: L

Because the operator A ⊗ B denotes the type of concatenations the types
A ⊗ B and B ⊗ A are not equivalent, and hence, L is non-commutative which
explains why implication must be broken up into two operators A ↼ B and
A ⇀ B . In the following subsections we give two extensions of L: one with
the well-known modality of-course of linear logic which adds weakening and
contraction, and a second with a new modality adding exchange.

3 Extensions to the Lambek Calculus

The linear modality, !A, read “of-course A” was first proposed by Girard [12] as
a means of encoding non-linear logic in both classical and intuitionistic forms in
linear logic. For example, non-linear implication A ⇀ B is usually encoded into
linear logic by !A(B . Since we have based L on non-commutative intuitionistic
linear logic it is straightforward to add the of-course modality to L. The rules
for the of-course modality are defined by the following rules:

Γ1, !A, Γ2, !A, Γ3 ` B

Γ1, !A, Γ2, Γ3 ` B
C

Γ1, Γ2 ` B

Γ1, !A, Γ2 ` B
W

!Γ ` B

!Γ `!B
Br

Γ1,A, Γ2 ` B

Γ, !A, Γ2 ` B
Bl

The rules C and W add contraction and weakening to L in a controlled way. Then
the other two rules allow for linear formulas to be injected into the modality; and
essentially correspond to the rules for necessitation found in S4 [5]. Thus, under
the of-course modality the logic becomes non-linear. We will see in Section 4.1
that these rules define a comonad. We call the extension of L with the of-course
modality L!.

As we remarked above, one leading question of the Lambek Calculus is: can
exchange be added in a similar way to weakening and contraction? That is, can
we add a new modality that adds the exchange rule to L in a controlled way?
The answer to this question is positive, and the rules for this new modality are
as follows:

κΓ ` B

κΓ ` κB Er
Γ1,A, Γ2 ` B

Γ1, κA, Γ2 ` B
El

Γ1, κA,B , Γ2 ` C

Γ1,B , κA, Γ2 ` C
E1

Γ1,A, κB , Γ2 ` C

Γ1, κB ,A, Γ2 ` C
E2

The first two rules are similar to of-course, but the last two add exchange to
formulas under the κ-modality. We call L with the exchange modality Lκ. Thus,
unlike intuitionistic linear logic where any two formulas can be exchanged, Lκ re-
stricts exchange to only formulas under the exchange modality. Just like of-course
the exchange modality is modeled categorically as a comonad; see Section 4.1.

4 Categorical Models

We now turn to the categorical models, ones where one considers different proofs
of the same theorem. Since the Lambek Calculus itself came from its categori-
cal models, biclosed monoidal categories, there is no shortage of these models.
However, Girard’s insight of relating logical systems via modalities should also
be considered in this context.

Lambek’s work on monoidal biclosed categories happened almost three decades
before Girard introduced Linear Logic, hence there were no modalities or expo-
nentials in Lambek’s setting. The categorical modelling of the modalities (of-
course! and why-not?) was the difficult issue with Linear Logic. This is where
there are design decisions to be made.

4.1 Dialectica Lambek Spaces

A sound and complete categorical model of the Lambek Calculi can be given
using a modification of de Paiva’s dialectica categories [9]. Dialectica categories
arose from de Paiva’s thesis on a categorical model of Gödel’s Dialectica in-
terpretation, hence the name. Dialectica categories were one of the first sound
categorical models of intuitionistic linear logic, with linear modalities. We show
in this section that they can be adapted to become a sound and complete model
for the Lambek Calculus, with both the exchange and of-course modalities. We
call this model dialectica Lambek spaces.

Due to the complexities of working with dialectica categories we have formally
verified3 this section in the proof assistant Agda [6]. Dialectica categories arise
as constructions over a given monoidal category. Suppose C is such a category.
Then in complete generality the objects of the dialectica category over C are
triples (U,X, α) where U and X are objects of C, and α : A // U ⊗ X is a
subobject of the tensor product in C of U and X. Thus, we can think of α as a

3 The complete formalization can be found online at https://github.com/heades/

dialectica-spaces/blob/Lambek/NCDialSets.agda.

https://github.com/heades/dialectica-spaces/blob/Lambek/NCDialSets.agda
https://github.com/heades/dialectica-spaces/blob/Lambek/NCDialSets.agda

relation over U ⊗X. If we specialize the category C to the category of sets and
functions, Set, then we obtain what is called a dialectica space. Dialectica spaces
are a useful model of full intuitionistic linear logic [15].

Morphisms between objects (U,X, α) and (V, Y, β) are pairs (f, F) where f :
U //V and F : Y //X are morphisms of C such that the pullback condition (U⊗
F)−1(α) ≤ (f ⊗Y)−1(β) holds. In dialectica spaces this condition becomes ∀u ∈
U.∀y ∈ Y.α(u, F (y)) ≤ β(f(u), y). The latter reveals that we can think of the
condition on morphisms as a weak form of an adjoint condition. Finally, through
some nontrivial reasoning on this structure we can show that this is indeed a
category; for the details see the formal development. Dialectica categories are
related to the Chu construction [11] and to Lafont and Streicher’s category of
games GAMEκ [17].

To some extent the underlying category C controls the kind of structure we
can expect in the dialectica category over C. However, de Paiva showed [11]
that by changing the relations used in the objects and the order used in the
‘adjoint condition’ (which also controls the type of structure) we can obtain a
non-symmetric tensor in the dialectica category, if the structure of the underlying
category and the structure of the underlying relations are compatible. She also
showed that one can abstract the notion of relation out as a parameter in the
dialectica construction, so long as this has enough structure, i.e. so long as you
have an algebra (that she called a lineale) to evaluate the relations at. We denote
this construction by DialL(C) where L is the lineale controlling the relations
coming from the monoidal category C. For example, Dial2(Set) is the category
of usual dialectica spaces of sets over the Heyting (or Boolean) algebra 2.

This way we can see dialectica categories as a framework of categorical models
of various logics, varying the underlying category C as well as the underlying
lineale or algebra of relations L. Depending on which category we start with
and which structure we use for the relations in the construction we will obtain
different models for different logics.

The underlying category we will choose here is the category Set, but the
structure we will define our relations over will be a biclosed poset, defined in the
next definition.

Definition 1. Suppose (M,≤, ◦, e) is an ordered non-commutative monoid. If
there exists a largest x ∈M such that a◦x ≤ b for any a, b ∈M , then we denote
x by a ⇀ b and called it the left-pseudocomplement of a w.r.t b. Additionally,
if there exists a largest x ∈ M such that x ◦ a ≤ b for any a, b ∈ M , then we
denote x by b ↼ a and called it the right-pseudocomplement of a w.r.t b.

A biclosed poset, (M,≤, ◦, e,⇀,↼), is an ordered non-commutative monoid,
(M,≤, ◦, e), such that a ⇀ b and b ↼ a exist for any a, b ∈M .

Now using the previous definition we define dialectica Lambek spaces.

Definition 2. Suppose (M,≤, ◦, e,⇀,↼) is a biclosed poset. Then we define
the category of dialectica Lambek spaces, DialM (Set), as follows:

- objects, or dialectica Lambek spaces, are triples (U,X, α) where U and X are
sets, and α : U ×X //M is a generalized relation over M , and

- maps that are pairs (f, F) : (U,X, α) // (V, Y, β) where f : U // V , and
F : Y // X are functions such that the weak adjointness condition ∀u ∈
U.∀y ∈ Y.α(u, F (y)) ≤ β(f(u), y) holds.

Notice that the biclosed poset is used here as the target of the relations in
objects, but also as providing the order relation in the weak adjoint condition
on morphisms. This will allow the structure of the biclosed poset to lift up into
DialM (Set).

We will show that DialM (Set) is a model of the Lambek Calculus with modali-
ties. First, we show that it is a model of the Lambek Calculus without modalities.
Thus, we must show that DialM (Set) is monoidal biclosed.

Definition 3. Suppose (U,X, α) and (V, Y, β) are two objects of DialM (Set).
Then their tensor product is defined as follows:

(U,X, α)⊗ (V, Y, β) = (U × V, (V → X)× (U → Y), α⊗ β)

where − → − is the function space from Set, and (α ⊗ β)((u, v), (f, g)) =
α(u, f(v)) ◦ β(g(u), v).

The identity of the tensor product just defined is I = (1,1, e), where 1 is the
terminal object in Set, and e is the unit of the biclosed poset. It is straightforward
to show that the tensor product is functorial, one can define the left and right
unitors, and the associator for tensor; see the formalization for the definitions. In
addition, all of the usual monoidal diagrams hold [9]. Take note of the fact that
this tensor product is indeed non-commutative, because the non-commutative
multiplication of the biclosed poset is used to define the relation of the tensor
product.

The tensor product has two right adjoints making DialM (Set) biclosed.

Definition 4. Suppose (U,X, α) and (V, Y, β) are two objects of DialM (Set).
Then two internal-homs can be defined as follows:

(U,X, α) ⇀ (V, Y, β) = ((U → V)× (Y → X), U × Y, α ⇀ β)
(V, Y, β) ↼ (U,X, α) = ((U → V)× (Y → X), U × Y, α ↼ β)

These two definitions are functorial, where the first is contravariant in the first
argument and covariant in the second, but the second internal-hom is covariant in
the first argument and contravariant in the second. The relations in the previous
two definitions prevent these two from collapsing into the same object, because
of the use of the left and right pseudocomplement. It is straightforward to show
that the following bijections hold:

Hom(A⊗B,C) ∼= Hom(B,A ⇀ C) Hom(A⊗B,C) ∼= Hom(A,C ↼ B)

Therefore, DialM (Set) is biclosed, and we obtain the following result.

Theorem 1. DialM (Set) is a sound and complete model for the Lambek Calculus
L without modalities.

We now extend DialM (Set) with two modalities: the usual modality, of-course,
denoted !A, and the exchange modality denoted κA. However, we must first
extended biclosed posets to include an exchange operation.

Definition 5. A biclosed poset with exchange is a biclosed poset (M,≤
, ◦, e,⇀,↼) equipped with an unary operation κ : M → M satisfying the fol-
lowing:

(Compatibility) a ≤ b implies κa ≤ κb for all a, b, c ∈M
(Minimality) κa ≤ a for all a ∈M
(Duplication) κa ≤ κκa for all a ∈M

(Left Exchange) κa ◦ b ≤ b ◦ κa for all a, b ∈M
(Right Exchange) a ◦ κb ≤ κb ◦ a for all a, b ∈M

Compatibility results in κ : M → M being a functor in the biclosed poset, and
the remainder of the axioms imply that κ is a comonad extending the biclosed
poset with left and right exchange.

We can now define the two modalities in DialM (Set) where M is a biclosed
poset with exchange; clearly we know DialM (Set) is also a model of the Lambek
Calculus without modalities by Theorem 1 because M is a biclosed poset.

Definition 6. Suppose (U,X, α) is an object of DialM (Set) where M is a bi-
closed poset with exchange. Then the of-course and exchange modalities can
be defined as !(U,X, α) = (U,U → X∗, !α) and κ(U,X, α) = (U,X, κα) where
X∗ is the free commutative monoid on X, (!α)(u, f) = α(u, x1) ◦ · · · ◦ α(u, xi)
for f(u) = (x1, . . . , xi), and (κα)(u, x) = κ(α(u, x)).

This definition highlights a fundamental difference between the two modalities.
The definition of the exchange modality relies on an extension of biclosed posets
with essentially the exchange modality in the category of posets. However, the
of-course modality is defined by the structure already present in DialM (Set),
specifically, the structure of Set.

Both of the modalities have the structure of a comonad. That is, there are
monoidal natural transformations ε! :!A //A, εκ : κA //A, δ! :!A // !!A, and
δκ : κA // κκA which satisfy the appropriate diagrams; see the formalization
for the full proofs. Furthermore, these comonads come equipped with arrows
e :!A //I, d :!A // !A⊗!A, βL : κA⊗B //B⊗κA, and βR : A⊗κB //κB⊗A.
Thus, we arrive at the following result.

Theorem 2. Suppose M is a biclosed poset with exchange. Then DialM (Set) is
a sound and complete model for the Lambek Calculi L!, Lκ, and L!κ.

5 Type Theory for Lambek Systems

In this section we introduce typed calculi for each of the logics discussed so far.
Each type system is based on the term assignment for Intuitionistic Linear Logic
introduced in [2]. We show that they are all strongly normalizing and confluent,
but we do not give full detailed proofs of each of these properties, because they

are straightforward consequences of the proofs of strong normalization and con-
fluence for intuitionistic linear logic. In fact, we will reference Bierman’s thesis
often within this section. The reader may wish to review Section 3.5 on page 88
of [4].

5.1 The Typed Lambek Calculus: λL

The first system we cover is the Lambek Calculus without modalities. This sys-
tem can be seen as the initial core of each of the other systems we introduce
below, and thus, we will simply extend the results here to three other systems.

The syntax for patterns, terms, and contexts are described by the following
grammar:

(patterns) p := − | x | unit | p1 ⊗ p2
(terms) t := x | unit | t1 ⊗ t2 | λlx : A.t | λrx : A.t | appl t1 t2 |

appr t1 t2 | let t1 be p in t2
(contexts) Γ := · | x : A | Γ1, Γ2

Contexts are sequences of pairs of free variables and types. Patterns are only
used in the let-expression which is itself used to eliminate logical connectives
within the left rules of L. All variables in the pattern of a let-expression are
bound. The remainder of the terms are straightforward.

The typing rules can be found in the in Figure 2 and the reduction rules in
Figure 3. The typing rules are as one might expect. The reduction rules were
extracted from the cut-elimination procedure for L.

We denote the reflexive and transitive closure of the by ∗. We call a
term with no β-redexes a normal form, and we denote normal forms by n. In
the interest of space we omit the congruence rules from the definition of the
reduction relation; we will do this for each calculi introduced throughout this
section. The other typed calculi we introduce below will be extensions of λL,
thus, we do not reintroduce these rules each time for readability.

Strong normalization. It is well known that intuitionistic linear logic (ILL)
is strongly normalizing, for example, see Bierman’s thesis [4] or Benton’s beau-
tiful embedding of ILL into system F [3].

It is fairly straightforward to define a reduction preserving embedding of λL
into ILL. Intuitionistic linear logic can be obtained from λL by replacing the
rules T IRl, T ILl, T IRr, and T ILr with the following two rules:

Γ2 ` t1 : A Γ1, x : B , Γ3 ` t2 : C

Γ1, z : A(B , Γ2, Γ3 ` [z t1/x]t2 : C
T Il

Γ, x : A ` t : B

Γ ` λx : A.t : A(B
T Ir

In addition, contexts are considered multisets, and hence, exchange is handled
implicitly. Then we can reuse the idea of Benton’s embeddings to show type
preservation and type reduction.

At this point we define the following embeddings.

Definition 7. We embed types and terms of λL into ILL as follows:

Types:
Ie = I

(A⊗ B)e = Ae ⊗ B e
(A⇀ B)e = Ae (B e

(A↼ B)e = Ae (B e

Terms:
x e = x

unite = unit
(t1 ⊗ t2)e = t1

e ⊗ t2
e

(let t1 be p in t2)e = let t1
e be p in t2

e

(λlx : A.t)e = λx : A.t e

(λrx : A.t)e = λx : A.t e

(appl t1 t2)e = t1
e t2

e

(appr t1 t2)e = t1
e t2

e

The previous embeddings can be extended to contexts in the straightforward way,
and to sequents as follows:

(Γ ` t : A)e = Γ e ` te : Ae

We can now prove strong normalization using the embedding preserves.

Theorem 3 (Strong Normalization).

– If Γ ` t : A in λL, then Γ e ` te : Ae in ILL.
– If t1 t2 in λL, then t1

e t2
e in ILL.

– If Γ ` t : A, then t is strongly normalizing.

Proof. The first two cases hold by straightforward induction on the form of the
assumed typing or reduction derivation. They then imply the third.

Confluence. The Church-Rosser property is well known to hold for ILL
modulo commuting conversions, for example, see Theorem 19 of [4] on page 96.
Since λL is essentially a subsystem of ILL, it is straightforward, albeit lengthly, to
simply redefine Bierman’s candidates and carry out a similar proof as Bierman’s
(Theorem 19 on page 96 of ibid.).

Theorem 4 (Confluence). The reduction relation, , modulo the commuting
conversions is confluent.

5.2 The Typed Lambek Calculus: λL!

The calculus we introduce in this section is an extension of λL with the of-course
modality !A. This extension follows from ILL exactly. The syntax of types and
terms of λL are extended as follows:

(types) A := · · · |!A
(terms) t := · · · | copy t ′ as t1, t2 in t | discard t ′ in t | promote! t

′ for t ′′ in t |
derelict! t

The new type and terms are what one might expect, and are the traditional
syntax used for the of-course modality. We add the following typing rules to λL:

Γ1, x :!A, Γ2, y :!A, Γ3 ` t : B

Γ1, z :!A, Γ2, Γ3 ` copy z as x , y in t : B
T C

Γ1, Γ2 ` t : B

Γ1, x :!A, Γ2 ` discard x in t : B
T W

−→x :!Γ ` t : B
−→y :!Γ ` promote!

−→y for−→x in t :!B
T Br

Γ1, x : A, Γ2 ` t : B

Γ1, y :!A, Γ2 ` [derelict! y/x]t : B
T Bl

x : A ` x : A
T var · ` unit : I

T Ur

Γ2 ` t1 : A Γ1, x : A, Γ3 ` t2 : B

Γ1, Γ2, Γ3 ` [t1/x]t2 : B
T cut

Γ1, Γ2 ` t : A

Γ1, x : I, Γ2 ` let x be unit in t : A
T Ul

Γ, x : A, y : B , Γ ′ ` t : C

Γ, z : A⊗ B , Γ ′ ` let z be x ⊗ y in t : C
T Tl

Γ1 ` t1 : A Γ2 ` t2 : B

Γ1, Γ2 ` t1 ⊗ t2 : A⊗ B
T Tr

Γ2 ` t1 : A Γ1, x : B , Γ3 ` t2 : C

Γ1, z : A⇀ B , Γ2, Γ3 ` [appr z t1/x]t2 : C
T IRl

Γ2 ` t1 : A Γ1, x : B , Γ3 ` t2 : C

Γ1, Γ2, z : B ↼ A, Γ3 ` [appl z t1/x]t2 : C
T ILl

Γ, x : A ` t : B

Γ ` λrx : A.t : A⇀ B
T IRr

x : A, Γ ` t : B

Γ ` λlx : A.t : B ↼ A
T ILr

Fig. 2. Typing Rules for the Typed Lambek Calculus: λL

Finally, the reduction rules can be found in Figure 4. The equality used in the
R BetaC rule is definitional, meaning, that the rule simply gives the terms on
the right side of the equation the name on the left side, and nothing more. This
makes the rule easier to read.

Strong normalization. Showing strong normalization for λL! easily follows
by a straightforward extension of the embedding we gave for λL.

Definition 8. The following is an extension of the embedding of λL into ILL
resulting in an embedding of types and terms of λL! into ILL. First, we define
(!A)e =!Ae, then the following defines the embedding of terms:

(copy t ′ as t1, t2 in t)
e = copy t ′

e
as t1

e, t2
e in te

(discard t ′ in t)e = discard t ′
e
in t e

(promote! t
′ for t ′′ in t)e = promote! t

′e for t ′′
e
in te

(derelict! t)
e = derelict! t

e

Just as before this embedding is type preserving and reduction preserving.

Theorem 5 (Type and Reduction Preserving Embedding).

– If Γ ` t : A in λL!, then Γ e ` te : Ae in ILL.
– If t1 t2 in λL!, then t1

e t2
e in ILL.

– If Γ ` t : A, then t is strongly normalizing.

Proof. The first two cases hold by straightforward induction on the form of the
assumed typing or reduction derivation. They then imply the third.

appl (λlx : A.t2) t1 [t1/x]t2
R Betal

appr (λrx : A.t2) t1 [t1/x]t2
R Betar

let t1 be unit in [unit/z]t2 [t1/z]t2
R BetaU

let t1 ⊗ t2 be x ⊗ y in t [t1/x][t2/y]t
R BetaT1

let t1 be x ⊗ y in [x ⊗ y/z]t2 [t1/x]t2
R BetaT2

[let t1 be unit in t2/z]t3 let t1 be unit in [t2/z]t3
R NatU

[let t1 be x ⊗ y in t2/z]t3 let t1 be x ⊗ y in [t2/z]t3
R NatT

let unit be unit in t t
R LetU

Fig. 3. Rewriting Rules for the Lambek Calculus: λL

Confluence. The Church-Rosser property also holds for λL!, and can be
shown by straightforwardly applying a slightly modified version of Bierman’s
proof [4] just as we did for λL. Thus, we have the following:

Theorem 6 (Confluence). The reduction relation, , modulo the commuting
conversions is confluent.

5.3 The Typed Lambek Calculus: λLκ

The next calculus we introduce is also an extension of λL with a modality that
adds exchange to λLκ denoted κA. It is perhaps the most novel of the calculi we
have introduced.

The syntax of types and terms of λL are extended as follows:

(types) A := · · · | κA
(terms) t := · · · | exchangel t1, t2 with x , y in t3 | exchanger t1, t2 with x , y in t3 |

promoteκ t
′ for t ′′ in t | derelictκ t

The syntax for types has been extended to include the exchange modality,
and the syntax of terms follow suit. The terms exchangel t1, t2 with x , y in t3 and
exchanger t1, t2 with x , y in t3 are used to explicitly track uses of exchange through-
out proofs.

derelict! (promote!
−→
t for−→x in t1) [

−→
t /−→x]t1

R BetaDR

discard (promote!
−→
t for−→x in t1) in t2 discard

−→
t in t2

R BetaDI

t ′1 = promote!
−→w for−→x in t1 t ′′1 = promote!

−→z for−→x in t1

copy (promote!
−→
t for−→x in t1) asw , z in t2 copy

−→
t as−→w ,−→z in [t ′1/w][t ′′1 /z]t2

R BetaC

[discard t in t1/x]t2 discard t in [t1/x]t2
R NatD

[copy t as x , y in t1/x]t2 copy t as x , y in [t1/x]t2
R NatC

Fig. 4. Rewriting Rules for The Typed Lambek Calculus: λL!

We add the following typing rules to λL:

Γ1, x1 : κA, y1 : B , Γ2 ` t : C

Γ1, y2 : B , x2 : κA, Γ2 ` exchangel y2, x2 with x1, y1 in t : C
T E1

Γ1, x1 : A, y1 : κB , Γ2 ` t : C

Γ1, y2 : κB , x2 : A, Γ2 ` exchanger y2, x2 with x1, y1 in t : C
T E2

−→x : κΓ ` t : B
−→y : κΓ ` promoteκ

−→y for−→x in t : κB
T Er

Γ1, x : A, Γ2 ` t : B

Γ1, y : κA, Γ2 ` [derelictκ y/x]t : B
T El

The reduction rules are in Figure 5, and are vary similar to the rules from λL!.

derelictκ (promoteκ
−→
t for−→x in t1) [

−→
t /−→x]t1

R BetaEDR

[exchangel t1, t2 with x , y in t3/z]t4 exchangel t1, t2 with x , y in [t3/z]t4
R NatEl

[exchanger t1, t2 with x , y in t3/z]t4 exchanger t1, t2 with x , y in [t3/z]t4
R NatEr

Fig. 5. Rewriting Rules for The Typed Lambek Calculus: λLκ

Strong normalization. Similarly, we show that we can embed λLκ into
ILL, but the embedding is a bit more interesting.

Definition 9. The following is an extension of the embedding of λL into ILL
resulting in an embedding of types and terms of λLκ into ILL. First, we define
(κA)e =!Ae, and then the following defines the embedding of terms:

(exchangel t1, t2 with x , y in t3)e = [t2
e/x][t1

e/y]t3
e

(exchanger t1, t2 with x , y in t3)e = [t2
e/x][t1

e/y]t3
e

(promoteκ t
′ for t ′′ in t)e = promote! t

′e for t ′′
e
in te

(derelictκ t)
e = derelict! t

e

The embedding translates the exchange modality into the of-course modality
of ILL. We do this so as to preserve the comonadic structure of the exchange
modality. One might think that we could simply translate the exchange modality
to the identity, but as Benton showed [3], this would result in an embedding that
does not preserve reductions. Furthermore, the left and right exchange terms are
translated away completely, but this works because ILL contains exchange in
general, and hence, does not need to be tracked explicitly. We now have strong
normalization and confluence.

Theorem 7 (Strong Normalization).

– If Γ ` t : A in λL!, then Γ e ` te : Ae in ILL.

– If t1 t2 in λL!, then t1
e t2

e in ILL.

– If Γ ` t : A, then t is strongly normalizing.

– The reduction relation, , modulo the commuting conversions is confluent.

Proof. The first two cases hold by straightforward induction on the form of the
assumed typing or reductions derivation. They then imply the third case.

5.4 The Typed Lambek Calculus: λL!κ

If we combine all three of the previous typed Lambek Calculi, then we obtain the
typed Lambek Calculus λL!κ. The main characteristics of this system are that
it provides the benefits of the non-symmetric adjoint structure of the Lambek
Calculus with the ability of having exchange, and the of-course modality, but
both are carefully tracked within the proofs.

Strong normalization for this calculus can be proved similarly to the previ-
ous calculi by simply merging the embeddings together. Thus, both modalities of
λL!κ would merge into the of-course modality of ILL. The Church-Rosser prop-
erty also holds for λL!κ by extending the proof of confluence for ILL by Bierman
[4] just as we did for the other systems. Thus, we have the following results.

Theorem 8 (Strong Normalization). If Γ ` t : A, then t is strongly nor-
malizing.

Theorem 9 (Confluence). The reduction relation, , modulo the commuting
conversions is confluent.

6 Acknowledgments

The authors would like to thank the anonymous reviewers for their feedback
which did make this a better paper. The second author was partially supported
by the NSF grant #1565557.

7 Conclusions

We have recalled how to use biclosed posets and sets to construct dialectica-like
models of the Lambek Calculus. This construction is admittedly not the easiest
one, which is the reason why we use automated tools to verify our definitions, but
it has one striking advantage. It shows how to introduce modalities to recover
the expressive power of intuitionistic (and a posteriori classical) propositional
logic to the system. We know of no other construction of models of Lambek
Calculus that does model modalities, not using their syntactic properties. (The
traditional view in algebraic semantics is to consider idempotent operators for
modalities like !). The categorical semantics here has been described before [10],
but the syntactic treatment of the lambda-calculi, in the style of [2] had not been
done and there were doubts about its validity, given the results of Jay [16]. We
are glad to put this on a firm footing, using another one of Benton’s ideas: his
embedding of intuitionistic linear logic into system F. Finally, we envisage more
work, along the lines of algebraic proof theory, for modalities and non-symmetric
type systems.

References

1. Samson Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5 –
9, 1994.

2. Nick Benton, Gavin Bierman, Valeria De Paiva, and Martin Hyland. A term
calculus for intuitionistic linear logic. In International Conference on Typed Lambda
Calculi and Applications, pages 75–90. Springer Berlin Heidelberg, 1993.

3. P. N. Benton. Strong normalisation for the linear term calculus. Journal of Func-
tional Programming, 5:65–80, 1 1995.

4. G. M. Bierman. On Intuitionistic Linear Logic. PhD thesis, Wolfson College,
Cambridge, December 1993.

5. G.M. Bierman and V.C.V. de Paiva. On an intuitionistic modal logic. Studia
Logica, 65(3):383–416, 2000.

6. Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda-a functional
language with dependent types. TPHOLs, 5674:73–78, 2009.

7. Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. Algebraic proof theory
for substructural logics: Cut-elimination and completions. Annals of Pure and
Applied Logic, 163(3):266 – 290, 2012.

8. Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh. Lambek vs. Lam-
bek: Functorial vector space semantics and string diagrams for Lambek calculus.
Annals of Pure and Applied Logic, 164(11):1079–1100, 2013.

9. Valeria de Paiva. The dialectica categories. PhD thesis, Computer Laboratory,
University of Cambridge, PhD Thesis, 1990. Computer Laboratory, University of
Cambridge, PhD Thesis.

10. Valeria de Paiva. A Dialectica model of the Lambek calculus. In 8th Amsterdam
Logic Colloquium, 1991.

11. Valeria De Paiva. Dialectica and chu constructions: Cousins? Theory and Appli-
cations of Categories, 17(7):127–152, 2007.

12. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 101, 1987.
13. G. Greco and A. Palmigiano. Linear Logic Properly Displayed. ArXiv e-prints,

November 2016.
14. Kohei Honda and Olivier Laurent. An exact correspondence between a typed pi-

calculus and polarised proof-nets. Theoretical Computer Science, 411(22):2223 –
2238, 2010.

15. Martin Hyland and Valeria de Paiva. Full intuitionistic linear logic (extended
abstract). Annals of Pure and Applied Logic, 64(3):273 – 291, 1993.

16. C. Barry Jay. Coherence in category theory and the Church-Rosser property. Notre
Dame J. Formal Logic, 33(1):140–143, 12 1991.

17. Yves Lafont and Thomas Streicher. Games semantics for linear logic. In Logic in
Computer Science, 1991. LICS’91., Proceedings of Sixth Annual IEEE Symposium
on, pages 43–50. IEEE, 1991.

18. F. Lamarche and C. Retoré. Proof nets for the Lambek calculus – an overview. In
Proceedings of the Third Roma Workshop. Proofs and Linguistic Categories, pages
241–262, 1996.

19. Joachim Lambek. The mathematics of sentence structure. American Mathematical
Monthly, pages 154–170, 1958.

20. Michael Moortgat. Typelogical grammar. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2014 edition, 2014.

21. Jeff Polakow. Ordered linear logic and applications. PhD thesis, Carnegie Mellon
University, 2001.

22. Vaughan R. Pratt. Types as processes, via Chu spaces. Electronic Notes in Theo-
retical Computer Science, 7:227 – 247, 1997.

23. P. Sewell, F. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa.
Ott: Effective tool support for the working semanticist. In Journal of Functional
Programming, volume 20, pages 71–122, 2010.

24. M. E. Szabo. Algebra of Proofs. Studies in Logic and the Foundations of Mathe-
matics, Vol. 88, North-Holland, 1978, 1979.

	Dialectica Categories for the Lambek Calculus

