
On Linear Logic, Functional Programming, and
Attack Trees

Harley Eades III1, Jiaming Jiang2, and Aubrey Bryant3

1 Computer Science, Augusta University, harley.eades@gmail.com
2 Computer Science, North Carolina State University

3 Computer Science, Augusta University

Abstract. This paper has two main contributions. The first is a new
linear logical semantics of causal attack trees in four-valued truth tables.
Our semantics is very simple and expressive, supporting specializations,
and supports the ideal semantics of causal attack trees, and partially
supporting the filter semantics of causal attack trees. Our second contri-
bution is Lina, a new embedded, in Haskell, domain specific functional
programming language for conducting threat analysis using attack trees.
Lina has many benefits over existing tools; for example, Lina allows one
to specify attack trees very abstractly, which provides the ability to de-
velop libraries of attack trees, furthermore, Lina is compositional, allow-
ing one to break down complex attack trees into smaller ones that can be
reasoned about and analyzed incrementally. Furthermore, Lina supports
automatically proving properties of attack trees, such as equivalences
and specializations, using Maude and the semantics introduced in this
paper.

1 Introduction

Attack trees are perhaps the most popular graphical model used to conduct
threat analysis of both physical and virtual secure systems. They were made
popular by Bruce Schneier in the late nineties [16]. In those early years attack
trees were studied and used as a syntactic tool to help guide analysis. However,
as systems grew more complex the need for a semantics of attack trees become
apparent; after all, without a proper semantics how can we safely manipulate
attack trees, extend their expressivity, or compare them?

A number of different models of attack trees have been proposed: a model in
Boolean algebras [11,10,15], series-parallel pomsets [12], Petri nets [13], and tree
automata [1]. There have also been various extensions, such as, adding sequential
composition [6], and defense nodes [9,10]. All of these models and extensions have
their benefits, but at the heart of them all is logic.

The model in Boolean algebras was the first and most elegant model of
attack trees, but it failed to capture the process aspect of attack trees, that
is, the fact that base attacks are actual processes that need to be carried out,
and the branching nodes compose these processes in different ways. Thus, the
community moved towards models of resources like parallel-series pomsets, Petri

mailto:harley.eades@gmail.com

nets, and automata. However, the complexity of these models increased, and
hence, comparing these models becomes difficult. Furthermore, this increased
complexity makes it hard to decide which to use and under which circumstances.
This difficulty can be resolved by recovering the elegant logical model of attack
trees.

Linear Logic. It is fitting that attack trees are the most popular model
used in threat analysis, because linear logic, one of the most widely studied logics
used to reason about resources, is also an excellent candidate for modeling attack
trees. In fact, Horne et al.[5] has already produced a number of interesting results.
Most importantly, they show that attack trees can be modeled as formulas in
linear logic, which then one can prove properties between attack trees by proving
implications between them. Furthermore, by studying attack trees from a linear
logical perspective they introduce a new property between attack trees called
specializations. Prior to their paper the literature was primarily concerned with
equality between attack trees, but the logical semantics of attack trees reveal
how one can break these equalities up into directional rewrite rules. An attack
tree is a specialization of another if the former is related to the later via these
rewrite rules. The logical semantics model the rewrite rules as implications.

This paper has two main contributions. The first is a new simple linear logical
semantics of causal attack trees – attack trees with sequential composition –
in four-valued truth tables. It comes in two flavors: the ideal quaternary logic
(Section 3.1) and the filterish quaternary logic (Section 3.2). These two types
of semantics correspond to truth table semantics for Horne et al.’s[5] ideal and
filter semantics of causal attack trees.

Functional Programming. Our second contribution is Lina, a new domain
specific functional programming language for conducting threat analysis using
attack trees. Consider the example attack trees in Fig. 1. Both of these contain
actual Lina programs for each of the corresponding attack trees; in fact, every
example in this paper is a Lina program. Lina supports causal attack trees with
attributes or without; thus, there are two types of base attacks: base attacks
with attributes, denoted base_wa, and base attacks with no attributes, denoted
base_na; an example usage of the former can be found in Fig. 3. Lina is designed
to be extremely simple, and to reflect the typical pseudocode found throughout
the literature. However, Lina is more than just a simple definitional language.

Lina is an embedded domain-specific programming language whose host lan-
guage is the Haskell programming language [7]. So, why Haskell? As security
researchers and professionals, we are in the business of verifying the correctness
of various systems. Thus, we should be taking advantage of verification tools
to insure that our constructions, tools, and analysis are correct. By embedding
Lina into Haskell, we are able to take advantage of cutting-edge verification tools
while conducting threat analysis. For example, right out the box Lina supports
property-based randomized testing using QuickCheck [2], and refinement types
in Liquid Haskell [17] to verify properties of our attack trees or the attribute do-
mains used while analyzing attack trees. Furthermore, Haskell’s advanced type
system helps catch bugs while we develop our attack trees and their attribute

seq_node "ATM attack"

(and_node "get credentials"

(base_na "steal card")

(or_node "get PIN"

(base_na "social engineer")

(base_na "find a post-it")))

(base_na "withdraw money")

or_node "ATM attack"

(seq_node "attack vector 1"

(and_node "get credentials 1"

(base_na "social engineer")

(base_na "steal card"))

(base_na "withdraw money"))

(seq_node "attack vector 2"

(and_node "get credentials 2"

(base_na "steal card")

(base_na "find a post-it"))

(base_na "withdraw money"))

Fig. 1. Attack Trees for an ATM attack from Figure 1 and Figure 2 of Kordy et al. [8]
and their corresponding Lina scripts.

domains as a side-effect of type checking. Finally, functional programs are short,
but not obfuscated, and hence allow for very compact and trustworthy programs.

That being said, we are designing Lina so that it can be used with very little
Haskell experience. It is our hope that one will be able to make use of Lina
without knowing Haskell, and we plan to develop new tooling to support this.

Lina approaches threat analysis from a programming language perspective,
leading to a number of new advances. First, as Gadyatskaya and Trujillo-Rasua
[4] argue, as a community we need to start building more automated means
of conducting threat analysis, and there is no better way to build or connect
automated tools than a programming language. Lina is perfect as a target for
new tools, and it can be connected to existing tools fairly easily. In fact, Lina
already supports automation using the automatic rewrite system Maude [3]; for
example, the two attack trees in Fig. 1 can be automatically proven equivalent to
each other in Lina. This is similar to Kordy’s [8] SPTool, but Lina goes further
and supports more than one backend rewrite system; for example, Lina is the
first tool to support automatically proving specializations of attack trees. The
user can choose which backend they wish to use.

2 Causal Attack Trees

We begin by introducing causal attack trees. This formulation of attack trees was
first proposed by Jhawar et al. [6], where they called them SAND attack trees,
however sequential composition does not always maintain the same properties
as conjunction; for example, classically it is a self dual operator. Thus, we follow
Horne et al.’s lead [5] and call them causal attack trees.

Definition 1. Suppose B is a set of base attacks whose elements are denoted by
b. Then an attack tree is defined by the following grammar:

A,B ,C ,T := b | OR(A,B) | AND(A,B) | SEQ(A,B)

Equivalence of attack trees, denoted by A ≈ B, is defined as follows:

OR(A,A) ≈ A
OR(A,B) ≈ OR(B ,A)
AND(A,B) ≈ AND(B ,A)

OR(OR(A,B),C) ≈ OR(A,OR(B ,C))
AND(AND(A,B),C) ≈ AND(A,AND(B ,C))
SEQ(SEQ(A,B),C) ≈ SEQ(A, SEQ(B ,C))
AND(A,OR(B ,C)) ≈ OR(AND(A,B),AND(A,C))
SEQ(A,OR(B ,C)) ≈ OR(SEQ(A,B), SEQ(A,C))

Throughout the sequel we will show that the previous rules are sound with
respect to our new model, but just as Horne et al. [5] did, we will then show
that there are properties of attack trees that these rules do not support, but our
semantics allows.

3 A Quaternary Semantics for Causal Attack Trees

Kordy et al. [10] gave a very elegant and simple semantics of attack-defense trees
in Boolean algebras. Unfortunately, while their semantics is elegant, it does not

capture the resource aspect of attack trees, it allows contraction, and it does
not provide a means to model sequential composition. In this section we give a
semantics of attack trees in the spirit of Kordy et al.’s using a four-valued logic.
This section was formally verified in the Agda Proof Assistant [14]4.

We now give two types of quaternary semantics for casual attack trees. We
do this by defining two four-valued logics we call quaternary logics. The propo-
sitional variables, elements of the set PVar, of our quaternary logics, denoted by
P , Q, R, and S, range over the set 4 = {0, 14 ,

1
2 , 1}. We think of 0 and 1 as we

usually do in Boolean algebras, but we think of 1
4 and 1

2 as intermediate values
that can be used to break various structural rules5. In particular we will use
these values to prevent exchange for sequential composition from holding, and
contraction from holding for parallel and sequential composition.

We use the usual notion of equivalence between propositions; that is, propo-
sitions φ and ψ are considered equivalent, denoted by φ ≡ ψ, if and only if they
have the same truth tables. In addition, we define a notion of entailment for
the quaternary logics. Denote by P ≤4 Q the usual natural number ordering
restricted to 4. Then we have the following result immediately.

Lemma 1 (Entailment in the Quaternary Logics). P ≡ Q if and only if
P ≤4 Q and Q ≤4 P

This result shows that we can break up the equivalence of attack trees into
directional properties captured here by entailments, and hence, every equivalence
proved throughout this section can also be used directionally.

3.1 The Ideal Quaternary Logic

The ideal semantics for casual attack trees was first proposed by Horne et al.[5].
In this section we give a simple truth table semantics that corresponds to their
ideal semantics within the ideal quaternary logic.

Definition 2. The logical connectives of the ideal quaternary logic are defined
as follows:

Parallel Composition:
P �I Q = 1,

where neither P nor Q are 0
P �I Q = 0, otherwise

Sequential Composition:
P BI Q = 1

2 ,
where P ∈ { 12 , 1} and Q 6= 0

P BI Q = 1
4 ,

where P = 1
4 and Q 6= 0

P BI Q = 0, otherwise
Choice:
P tI Q = max(P,Q)

4 The formalization can be found at https://github.com/MonoidalAttackTrees/

ATLL-Formalization
5 Choosing 1

4
and 1

2
as the symbols for the intermediate values was arbitrary, and one

can choose any symbols at all for these two values and the semantics will still be
correct.

https://github.com/MonoidalAttackTrees/ATLL-Formalization
https://github.com/MonoidalAttackTrees/ATLL-Formalization

These definitions are carefully crafted to satisfy the necessary properties to model
attack trees on the ideal semantics. Comparing these definitions with Kordy et
al.’s [10] work we can see that choice is defined similarly, but parallel com-
position is not a product – ordinary conjunction – but rather a linear tensor
product. Sequential composition is not actually definable in a Boolean algebra,
and hence makes use of the intermediate values to insure that neither exchange
nor contraction hold.

In order to model attack trees, the previously defined logical connectives must
satisfy the appropriate equivalences corresponding to the equations between at-
tack trees. We break these properties up into the following lemmata.

Lemma 2 (Basic Properties for Choice). The following properties hold:

1. (P tI Q) ≡ (Q tI P)

2. ((P tI Q) tI R) ≡ (P tI (Q tI R))

3. P ≤4 (P tI Q)

4. Q ≤4 (P tI Q)

5. If P ≤4 R and Q ≤4 R, then (P tI Q) ≤4 R

6. If P ≤4 R and Q ≤4 S, then (P tI Q) ≤4 (R tI S)

Proof. Each of the properties hold by comparing truth tables.

The previous lemma shows that choice has the same properties as Boolean dis-
junction. Hence, it is possible to show using these rules that P tI P ≡ P which
follows from properties three, four, and five.

Lemma 3 (Basic Properties for Parallel Composition). The following
properties hold:

1. (P �I P) 6≡ P

2. (P �I Q) ≡ (Q�I P)

3. ((P �I Q)�I R) ≡ (P �I (Q�I R))

4. (P �I (Q tI R)) ≡ ((P �I Q) tI (P �I R))

5. If P ≤4 R and Q ≤4 S, then (P �I Q) ≤4 (R�I S)

Proof. We give the proof of property one. The other properties hold by com-
paring truth tables. Suppose P = 1

2 , then P �I P = 1
2 �I

1
2 = 1, but 1 is not

1
2 .

The previous lemma shows that sequential composition is a linear tensor product.
In particular, the first property guarantees that sequential composition does not
contract parallel copies of attack trees into a single attack tree.

Lemma 4 (Basic Properties for Sequential Composition). The following
properties hold:

1. (P BI P) 6≡ P

2. (P BI Q) 6≡ (QBI P)

3. (P BI (QBI R)) ≡ ((P BI Q) BI R)

4. (P BI (Q tI R)) ≡ ((P BI Q) tI (P BI R))

5. If P ≤4 R and Q ≤4 S, then (P BI Q) ≤4 (RBI S)

Proof. We give proofs for properties one and two, but the others hold by compar-
ing truth tables. As for property one, suppose P = 1, then P BI P = 1BI 1 = 1

2 ,
but 1 is not 1

2 . Now for property two, suppose P = 1 and Q = 1
4 , then

P BI Q = 1 BI
1
4 = 1

2 , but QBI P = 1
4 BI 1 = 1

4 .

This lemma is similar to the previous. However, property two guarantees that
sequential composition is not commutative.

Lemma 5 (The Ideal Properties). The following properties hold:

1. ((P �I Q) BI (R�I S)) ≤4 ((P BI R)�I (QBI S))

2. ((P �I Q) BI R) ≤4 (P �I (QBI R))

3. (P BI (Q�I R) ≤4 (Q�I (P BI R))

4. (P BI Q) ≤4 (P �I Q)

Proof. Each property holds by comparing truth tables.

At this point it is quite easy to model attack trees as formulas. The following
defines their interpretation.

Definition 3. Suppose B is some set of base attacks, and ν : B → PVar is
an assignment of base attacks to propositional variables. Then we define the
interpretation of attack trees to propositions as follows:

Jb ∈ BK = ν(b)
JAND(A,B)K = JAK�I JBK

JSEQ(A,B)K = JAK BI JBK
JOR(A,B)K = JAK tI JBK

We can use this semantics to prove equivalences between attack trees.

Lemma 6 (Equivalence of Attack Trees in the Ideal Quaternary Se-
mantics). Suppose B is some set of base attacks, and ν : B → PVar is an
assignment of base attacks to propositional variables. Then for any attack trees
A and B, if A ≈ B, then JAK ≡ JBK.

Proof. This proof holds by induction on the form of A ≈ B .

3.2 The Filterish Quaternary Logic

We now introduce the filterish semantics for casual attack trees. This is a re-
stricted notion of the filter semantics of Horne et al. [5]. We were unable to find a
quaternary semantics for the full filter semantics, because we obtained contrac-
tions when attempting to satisfy the corresponding specialization properties in
the filter model. We are unsure if these contradictions arise due to the fact that
the semantics proposed here is intuitionistic while Horne et al. [5] use classical
logic, or if four values just are not enough, or if we just have not been able to
find it.

In this section we do as we did in the previous and define a quaternary logic
called the filterish quaternary logic.

Definition 4. The logical connectives of the filterish quaternary logic are de-
fined as follows:

Parallel Composition:
P �F Q = 1

2 ,
where neither P nor Q are 0

P �F Q = 0, otherwise

Sequential Composition:
P BF Q = 1,

where P ∈ { 12 , 1} and Q 6= 0
P BF Q = 1

4 ,
where P = 1

4 and Q 6= 0
P BF Q = 0, otherwise

Choice:
P tF Q = max(P,Q)

We have the same basic properties as the ideal quaternary logic. We omit proofs,
because they are similar to the corresponding properties in the ideal semantics.

Lemma 7 (Basic Properties for Choice). The following properties hold:

1. (P tF Q) ≡ (Q tF P)

2. ((P tF Q) tF R) ≡ (P tF (Q tF R))

3. P ≤4 (P tF Q)

4. Q ≤4 (P tF Q)

5. If P ≤4 R and Q ≤4 R, then (P tF Q) ≤4 R

6. If P ≤4 R and Q ≤4 S, then (P tF Q) ≤4 (R tF S)

Lemma 8 (Basic Properties for Parallel Composition). The following
properties hold:

1. (P �F P) 6≡ P

2. (P �F Q) ≡ (Q�F P)

3. ((P �F Q)�F R) ≡ (P �F (Q�F R))

4. (P �F (Q tF R)) ≡ ((P �F Q) tF (P �F R))

5. If P ≤4 R and Q ≤4 S, then (P �F Q) ≤4 (R�F S)

Lemma 9 (Basic Properties for Sequential Composition). The following
properties hold:

1. (P BF P) 6≡ P

2. (P BF Q) 6≡ (QBF P)

3. (P BF (QBF R)) ≡ ((P BF Q) BF R)

4. (P BF (Q tF R)) ≡ ((P BF Q) tF (P BF R))

5. If P ≤4 R and Q ≤4 S, then (P BF Q) ≤4 (RBF S)

We now give the filterish properties that correspond to a subset of the filter
properties proposed by Horne et al. [5].

Lemma 10 (The Filterish Properties). The following properties hold:

1. ((P BF R)�F (QBF S)) ≤4 ((P �F Q) BF (R�F S))

2. (P �F (QBF R)) ≤4 ((P �F Q) BF R)

The remaining filter properties proposed by Horne et al. [5] actually fail in both
directions.

Lemma 11. There exists an P , Q, and R that cause the following properties to
not hold:

1. (P BF (Q�F R)) ≤r (Q�F (P BF R))

2. (P BF Q) ≤4 (P �F Q)

Interestingly, if we change Definition 4 so that all the basic properties hold and
Lemma 11 holds, then the inequalities in Lemma 10 degenerate to equalities. We
were unable to find a definition of the logical connectives that make all of the
properties in both of the previous lemmas hold.

Just as we did for the ideal quaternary semantics we can show that we can
model attack trees as formulas. The following defines their interpretation.

Definition 5. Suppose B is some set of base attacks, and ν : B → PVar is
an assignment of base attacks to propositional variables. Then we define the
interpretation of attack trees to propositions as follows:

Jb ∈ BK = ν(b)
JAND(A,B)K = JAK�F JBK

JSEQ(A,B)K = JAK BF JBK
JOR(A,B)K = JAK tF JBK

We can use this semantics to prove equivalences between attack trees.

Lemma 12 (Equivalence of Attack Trees in the Ideal Quaternary Se-
mantics). Suppose B is some set of base attacks, and ν : B → PVar is an
assignment of base attacks to propositional variables. Then for any attack trees
A and B, if A ≈ B, then JAK ≡ JBK.

Proof. This proof holds by induction on the form of A ≈ B .

3.3 An Example Specialization

The quaternary logics introduced in the previous section do indeed capture all
of the equivalences of attack trees, but they also support proving specializations.
Consider the example attack trees in Fig. 2. In the ideal semantics attack tree C is

A.
and_node "obtain secret"
(or_node "obtain encrypted file"

(base_na "bribe sysadmin")
(base_na "steal backup"))

(seq_node "obtain password"
(base_na "break into system")
(base_na "install keylogger"))

B.
seq_node "break in, obtain secret"
(base_na "break into system")
(and_node "obtain secret inside"

(base_na "install keylogger")
(base_na "steal backup"))

C.
or_node "obtain secret"
(and_node "obtain secret via sysadmin"
(base_na "bribe sysadmin")
(seq_node "obtain password"

(base_na "break into system")
(base_na "install keylogger")))

(seq_node "break in, obtain secret"
(base_na "break into system")
(and_node "obtain secret inside"

(base_na "install keylogger")
(base_na "steal backup")))

Fig. 2. Encrypted Data Attack from Figure 1 (A), Figure 3 (B), and Figure 2 (C) of
Horne et al. [5].

a sound specialization of attack tree A, and attack tree B is a sound specialization
of attack tree A. Attack tree C requires the attacker to break into the system
before they can steal the backup, but attack tree A does not require this. Then
attack tree B has dropped bribing the sysadmin and simply requires the attacker
to just steal the backups. Notice that none of the attack trees in Fig. 2 are
equivalent. So how do we prove these specializations are sound? We prove that
they are related through an entailment rather than an equivalence.

Definition 6. An attack tree A is a sound specialization of an attack B if and
only if JAK ≤4 JBK.

We can now formally prove that the attack tree C is a specialization of attack
tree A, and that attack tree B is a specialization of attack tree A from Fig. 2.

Example 1. First, consider the following assignment:

a := "bribe sysadmin" b := "break into system"

c := "install keylogger" d := "steal backup"

Then we have the following interpretations:

JAK = JAND(OR(a, d), SEQ(b, c))K
= (a tI d)�I (bBI c)

JBK = JSEQ(b,AND(c, d))K
= bBI (c�I d)

JCK = JOR(AND(a, SEQ(b, c)),SEQ(b,AND(c, d)))K
= (a�I (bBI c)) tI (bBI (c�I d))

We reuse the same names for base attacks across the interpretations above.
Finally, we have the following two entailments:

JCK ≤4 JAK :

(a�I (bBI c)) tI (bBI (c�I d))
≤4 (a�I (bBI c)) tI (bBI (d�I c))
≤4 (a�I (bBI c)) tI (d�I (bBI c))
≤4 (a tI d)�I (bBI c)

JBK ≤I JAK :

bBI (c�I d)
≤4 bBI (c�I (a tI d))
≤4 bBI ((a tI d)�I c)
≤4 (a tI d)�I (bBI c)

Notice that neither JAK ≤4 JC K nor JAK ≤4 JBK hold, and thus, equivalences
cannot prove the previous properties.

4 Lina: An EDSL for Conducting Threat Analysis using
Causal Attack Trees

All of the models mentioned in this paper have been incorporated into a new
embedded domain specific language (EDSL) for conducting threat analysis called
Lina6 which means small, young palm tree, but we constructed the name by
combining the words linear and attack.

Lina is embedded inside of Haskell, a statically-typed functional program-
ming language. The most important property of any EDSL is that they sub-
sume the entirety of their host language, and can be prototyped quite rapidly.
Haskell contributes several advantages, such as cutting edge verification tools,
and a strong type system for catching bugs quickly.

Lina currently supports three types of causal attack trees:

– Process Attack Trees: these are attack trees with no attributes at all,

– Attributed Process Attack Trees: these are attack trees with attributes on
the base attacks only. This is an intermediate representation used to build
full attack trees.

– Full Attack Trees: these are attributed process attack trees with an associ-
ated attribute domain.

Internally, we represent causal attack trees by a simple data type, called IAT,
whose nodes are labeled with an integer identifier we call ID. We then define
each type of attack tree as a record (labeled tuple):

6 Lina is under active development and its implementation can be found online at
https://github.com/MonoidalAttackTrees/Lina

https://github.com/MonoidalAttackTrees/Lina

-- Attributed Process Attack Tree
data APAttackTree attribute label =
APAttackTree {
process_tree :: IAT,
labels :: B.Bimap label ID,
attributes :: M.Map ID attribute
}

-- Process Attack Tree
type PAttackTree label = APAttackTree () label

-- Full Attack Tree
data AttackTree attribute label = AttackTree {

ap_tree :: APAttackTree attribute label,
configuration :: Conf attribute

}

A B.Bimap is a dictionary where we can efficiently look up IDs given a label or
efficiently look up labels given an ID. A M.Map is a typical dictionary, and ()

is the unit type.

This design has several benefits. Internal attack trees are very easy to trans-
late to various backends, especially formulas because we can use the IDs on base
attacks as atomic formulas – which has its own benefits discussed below – and
modifying labels and attributes is more efficient than having them labeled on the
trees themselves. The previous data types reveal that actually all attack trees
are attributed process attack trees, and a process attack tree simply does not
use the attributes. This allows Lina to offer a uniform syntax for specifying all
types of attack tree.

One important aspect of the definition of the various forms of attack trees
is that the types label and attribute are actually type variables, and thus,
our definition of attack trees is very general; in fact, label and attribute can
be instantiated with any type whose elements are comparable. This property is
captured by ad-hoc polymorphism using type classes in Haskell, and is checked
during type checking.

Conducting threat analysis using attack trees requires them to be associated
with an attribute domain. Typically, an attribute domain is a set, together with
operations for computing the attribute of the branching nodes of an attack tree
given attributes on the base attacks. In Lina attribute domains are defined by a
type, here called attribute, and a configuration:

data Conf attribute = (Ord attribute) => Conf {
orOp :: attribute -> attribute -> attribute,
andOp :: attribute -> attribute -> attribute,
seqOp :: attribute -> attribute -> attribute

}

Utilizing higher-order functions we can define configurations easily and gener-
ically. For example, here is the configuration that computes the minimum at-
tribute for choice nodes, the maximum attribute for parallel nodes, and takes
the sum of the children nodes as the attribute for sequential nodes:

minMaxAddConf :: (Ord attribute,Semiring attribute) => Conf attribute
minMaxAddConf = Conf min max (.+.)

Notice here that this configuration will work with any type at all whose elements
are comparable and form a semiring, thus making configurations generic and
reusable. This includes types like Integer and Double.

The definitional language for attributed process attack trees of type
APAttackTree attribute label is described by the following grammar:

at ::= base_na label | base_wa attribute label | or_node label at1 at2

| and_node label at1 at2 | seq_node label at1 at2

A full example of the definition of an attributed process attack tree for attacking
an autonomous vehicle can be found in Fig. 3. The definition of vehicle_attack

import Lina.AttackTree

vehicle_attack :: APAttackTree Double String
vehicle_attack = start_PAT $

or_node "Autonomous Vehicle Attack"
(seq_node "External Sensor Attack"

(base_wa 0.2 "Modify Street Signs to Cause Wreck")
(and_node "Social Engineering Attack"

(base_wa 0.6 "Pose as Mechanic")
(base_wa 0.1 "Install Malware")))

(seq_node "Over Night Attack"
(base_wa 0.05 "Find Address where Car is Stored")
(seq_node "Compromise Vehicle"

(or_node "Break In"
(base_wa 0.8 "Break Window")
(base_wa 0.5 "Disable Door Alarm/Locks"))

(base_wa 0.1 "Install Malware")))

Fig. 3. Lina Script for an Autonomous Vehicle Attack.

begins with a call to start_PAT. Behind the scenes, all of the ID’s within the
internal attack tree are managed implicitly, which requires the internals of Lina
to work within a special state-based type. The function start_PAT initializes
this state. Finally, we can define the vehicle attack tree as follows:

vehicle_AT :: AttackTree Double String
vehicle_AT = AttackTree vehicle_attack minMaxMaxConf

This attack tree associates the vehicle attack attributed process attack tree with
a configuration called minMaxMaxConf that simply takes the minimum as the
attribute of choice nodes, and the maximum as the attribute of every parallel
and sequential node. Lina as two important features that other tools lack. First,
it can abstract the definitions of attack trees. Second, it is highly compositional,
because it is embedded inside of a functional programming language. Consider
the following abstraction of vehicle_attack:

vehicle_AT' :: Conf Double -> AttackTree Double String
vehicle_AT' conf = AttackTree vehicle_attack conf

Here the configuration has been abstracted. This facilitates experimentation be-
cause the security practitioner can run several different forms of analysis on the
same attack tree using different attribute domains. Attack trees in Lina can also
be composed and decomposed; hence, complex trees can be broken down into
smaller ones, then studied in isolation. This helps facilitate correctness, and of-
fers more flexibility. As an example, in Fig. 4 we break up vehicle_attack into
several smaller attack trees. We can see in the example that if we wish to use

se_attack :: APAttackTree Double String
se_attack = start_PAT $

and_node "social engineering attack"
(base_wa 0.6 "pose as mechanic")
(base_wa 0.1 "install malware")

bi_attack :: APAttackTree Double String
bi_attack = start_PAT $

or_node "break in"
(base_wa 0.8 "break window")
(base_wa 0.5 "disable door alarm/locks")

cv_attack :: APAttackTree Double String
cv_attack = start_PAT $

seq_node "compromise vehicle"
(insert bi_attack)
(base_wa 0.1 "install malware")

es_attack :: APAttackTree Double String
es_attack = start_PAT $

seq_node "external sensor attack"
(base_wa 0.2 "modify street signs to cause

wreck")
(insert se_attack)

on_attack :: APAttackTree Double String
on_attack = start_PAT $

seq_node "overnight attack"
(base_wa 0.05 "Find address where car

is stored")
(insert cv_attack)

vehicle_attack'' :: APAttackTree Double String
vehicle_attack'' = start_PAT $

or_node "Autonomous Vehicle Attack"
(insert es_attack)
(insert on_attack)

Fig. 4. The Autonomous Vehicle Attack Decomposed

an already defined attack tree in an attack tree we are defining, then we can
make use of the insert function. As we mentioned above, behind the scenes
Lina maintains a special state that tracks the identifiers of each node; thus,
when one wishes to insert an existing attack tree, which will have its own iden-
tifier labeling, into a new tree, then that internal state must be updated; thus,
insert carries out this updating. Lina is designed so that the user never has
to encounter that internal state. So far we have introduced Lina’s basic design
and definitional language for specifying causal attack trees, and we have already
begun seeing improvements over existing tools; however, Lina has so much more
to offer. We now introduce Lina’s support for reasoning about and performing
analysis on causal attack trees. Kordy et al. [8] introduce the SPTool, an equiva-
lence checker for causal attack trees that makes use of the rewriting logic system
Maude [3] which allows one to specify rewrite systems and systems of equiva-
lences. Kordy et al. specify the equivalences for causal attack trees from Jhawar
et al.’s [6] work in Maude, and then use Maude’s querying system to automat-
ically prove equivalences between causal attack trees. This is a great idea, and
we incorporate it into Lina, but we make several advancements over SPTool.
Lina includes a general Maude interface, and allows the user to easily define new
Maude backends, where a Maude backend corresponds to a Maude specification
of a particular rewrite system. Currently, Lina has two Maude backends: equiv-
alences for causal attack trees, and the multiplicative attack tree linear logic
(MATLL). The former is essentially the exact same specification as the SPTool,
but the latter corresponds to the two quaternary logics defined in Section 3.
Attributed process attack trees are converted into the following syntax:

(Maude Formula) F := ID | F1;F2 | F1.F2 | F1 + F2

This is done by simply converting the internal attack tree into the above syn-
tactic form. For example, the Maude formula for the autonomous vehicle attack
from Fig. 3 is (0 ; (1 . 2)) || (5 ; ((6 || 7) ; 2)), where each integer
corresponds to the identifier of the base attacks. Note that the base attack 2 ap-
pears twice, this is because this base attack appears twice in the original attack
tree. This syntax is then used to write the Maude specification for the various
backends. The full Maude specification for the causal attack tree equivalence
checker can be found in Appendix A. However, Kordy et al.’s specification only
supports proving equivalences, but what about specializations? Lina supports
proving specializations between attack trees using the MATLL Maude backend.
Its full Maude specification can be found in Fig. 5. The axioms a1 through a5

mod MATLL is
protecting LOOP-MODE .
sorts Formula .
subsort Nat < Formula .
op _||_ : Formula Formula -> Formula [ctor assoc comm] .
op _._ : Formula Formula -> Formula [ctor assoc comm prec 41] .
op _;_ : Formula Formula -> Formula [ctor assoc prec 40] .
var a b c d : Formula .
rl [a1] : a . (b || c) => (a . b) || (a . c) .
rl [a1Inv] : (a . b) || (a . c) => a . (b || c) .
rl [a2] : a ; (b || c) => (a ; b) || (a ; c) .
rl [a2Inv] : (a ; b) || (a ; c) => a ; (b || c) .
rl [a3] : (b || c) ; a => (b ; a) || (c ; a) .
rl [a3Inv] : (b ; a) || (c ; a) => (b || c) ; a .
rl [a4] : (a . b) ; c => a . (b ; c) .
rl [a4Inv] : a . (b ; c) => (a . b) ; c .
rl [a5] : (a ; b) . (c ; d) => (a . c) ; (b . d) .
rl [a5Inv] : (a . c) ; (b . d) => (a ; b) . (c ; d) .
rl [switch] : a ; (b . c) => b . (a ; c) .
rl [seq-to-para] : a ; b => a . b .
endm

Fig. 5. Maude Specification for MATLL.

are actually equivalences, but the last two rules are not. At this point we can use
these backends to reason about attack trees. The programmer can make queries
to Lina by first importing one or more Lina modules, and then making a query
using Haskell’s REPL – read, evaluate, print, loop – called GHCi. Consider the
example Lina program in Fig. 6. These are the attack trees from Fig. 2. Then
an example Lina session is as follows:

> :load source/Lina/Examples/Specializations.hs
...
Ok, modules loaded
> is_specialization enc_data2 enc_data1
True
>

In this session we first load the Lina script from Fig. 6 which is stored in the
file Specializations.hs. Then we ask Lina if enc_data2 is a specialization of

import Lina.AttackTree
import Lina.Maude.MATLL
-- A
enc_data1 :: PAttackTree String
enc_data1 = start_PAT $

and_node "obtain secret"
(or_node "obtain encrypted file"

(base_na "bribe sysadmin")
(base_na "steal backup"))

(seq_node "obtain password"
(base_na "break into system")
(base_na "install keylogger"))

-- C
enc_data2 :: PAttackTree String
enc_data2 = start_PAT $

or_node "obtain secret"
(and_node "obtain secret via sysadmin"

(base_na "bribe sysadmin")
(seq_node "obtain password"

(base_na "break into system")
(base_na "install keylogger")))

(seq_node "break in, then obtain secret"
(base_na "break into system")
(and_node "obtain secret from inside"

(base_na "install keylogger")
(base_na "steal backup")))

Fig. 6. Full Lina Script for the Attack Trees A and C from Fig. 2.

enc_data1, and Lina responds True, thus automating the proof given in Exam-
ple 1. In addition to reasoning about attack trees, Lina also support analysis of
attack trees. Currently, Lina supports several types of analysis: evaluating attack
trees, querying the attack tree for the attribute value of a node, projecting out
the set of attacks from an attack tree, and computing the maximal and minimal
attack. When one defines an attack tree that tree is left unevaluated; that is, the
attribute dictionary associated with the attack tree only has attributes recorded
for the base attacks. If one wishes to know the attribute values at the branching
nodes, then one must evaluate the attack tree, which populates the attribute
dictionary with the missing attributes. For example, we may evaluate the attack
tree for the autonomous vehicle attack from Fig. 3, and query the tree for the
attributes at various nodes:

> let (Right e_vat) = eval vehicle_AT
> e_vat <@> "social engineering attack"
0.6
>

Here we first evaluate the attack tree vehicle_AT giving it the name e_vat, and
then we use the attributed query combinator <@> to ask for the attribute at the
parallel node labeled with "social engineering attack". Note that the eval-
uator, eval, uses the configuration associated with the attack tree to compute
the values at each branching node. It is also possible to project out various at-
tacks from an attack tree. In Lina an attack corresponds to essentially an attack
tree with no choice nodes. We call its data type Attack attribute label. An

attack does not have any choice nodes, because they are all split into multiple
attacks; one for each child node. For example, the set of possible attacks for the
autonomous vehicle attack from Fig. 3 can be found in Fig. 7. Lina can com-

SEQ("external sensor attack",0.6)
("modify street signs to cause wreck",0.2)
(AND("social engineering attack",0.6)

("pose as mechanic",0.6)
("install malware",0.1))

SEQ("over night attack",0.8)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.8)

("break window",0.8)
("install malware",0.1))

SEQ("over night attack",0.5)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.5)

("disable door alarm/locks",0.5)
("install malware",0.1))

Fig. 7. Set of Possible Attacks for an Autonomous Vehicle Attack.

pute these automatically using the get_attacks command. Finally, given the
set of attacks for the autonomous vehicle attack we can also compute the set of
minimal and maximal attacks. For example, consider the following session:

> min_attacks.get_attacks $ vehicle_AT
[SEQ("over night attack",0.5)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.5)
("disable door alarm/locks",0.5)
("install malware",0.1))]

In this session we first apply get_attacks to vehicle_AT to compute the
set of possible attacks, and then we compute the minimal attack from this set.

5 Conclusion and Future Work

We made two main contributions: a new four-valued truth table semantics of
causal attack trees that supports specializations of attack trees, and a new em-
bedded domain specific programming language called Lina for specifying, rea-
soning, and analyzing attack trees.

We plan to investigate completeness results with respect to the ideal and
filterish quaternary logics. Lina is under active development, and we have a
number of extensions planned, for example, adding support for attack-defense
trees, attack(-defense) graphs, attack nets, a GUI for viewing the various models,
and a SMT backend. Finally, it is necessary for number of case studies to be

carried out within Lina to be able to support the types of analysis required for
real world applications.

6 Acknowledgments

This work was supported by NSF award #1565557. We thank Clément Aubert
for helpful discussions and feedback on previous drafts of this paper, and the
anonymous reviewers whose recommendations made this a better paper.

References

1. S.A. Camtepe and B. Yener. Modeling and detection of complex attacks. In
Security and Privacy in Communications Networks, pages 234–243, Sept 2007.

2. Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing
of haskell programs. SIGPLAN Not., 46(4):53–64, May 2011.

3. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-
Oliet, José Meseguer, and Carolyn Talcott. Maude manual (version 2.1). SRI
International, Menlo Park, 2005.

4. Olga Gadyatskaya and Rolando Trujillo-Rasua. New directions in attack tree
research: Catching up with industrial needs. In Peng Liu, Sjouke Mauw, and
Ketil Stolen, editors, Graphical Models for Security, pages 115–126, Cham, 2018.
Springer International Publishing.

5. Ross Horne, Sjouke Mauw, and Alwen Tiu. Semantics for specialising attack trees
based on linear logic. Fundamenta Informaticae, 153(1-2):57–86, 2017.

6. Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sas̆a Radomirović, and Rolando
Trujillo-Rasua. Attack trees with sequential conjunction. In Hannes Federrath
and Dieter Gollmann, editors, ICT Systems Security and Privacy Protection, vol-
ume 455 of IFIP Advances in Information and Communication Technology, pages
339–353. Springer International Publishing, 2015.

7. Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cam-
bridge University Press, 2003.

8. Barbara Kordy, Piotr Kordy, and Yoann van den Boom. SPTool – Equivalence
Checker for SAND Attack Trees, pages 105–113. Springer International Publishing,
Cham, 2017.

9. Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. Foun-
dations of attack–defense trees. In Pierpaolo Degano, Sandro Etalle, and Joshua
Guttman, editors, Formal Aspects of Security and Trust, pages 80–95, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

10. Barbara Kordy, Marc Pouly, and Patrick Schweitzer. Computational aspects of
attack–defense trees. In Pascal Bouvry, Mieczys lawA. K lopotek, Franck Leprévost,
Ma lgorzata Marciniak, Agnieszka Mykowiecka, and Henryk Rybiński, editors, Se-
curity and Intelligent Information Systems, volume 7053 of Lecture Notes in Com-
puter Science, pages 103–116. Springer Berlin Heidelberg, 2012.

11. Barbara Kordy, Marc Pouly, and Patrick Schweitzer. A probabilistic framework for
security scenarios with dependent actions. In Elvira Albert and Emil Sekerinski,
editors, Integrated Formal Methods, volume 8739 of Lecture Notes in Computer
Science, pages 256–271. Springer International Publishing, 2014.

12. Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In DongHo
Won and Seungjoo Kim, editors, Information Security and Cryptology - ICISC
2005, volume 3935 of Lecture Notes in Computer Science, pages 186–198. Springer
Berlin Heidelberg, 2006.

13. J. P. McDermott. Attack net penetration testing. In Proceedings of the 2000
Workshop on New Security Paradigms, NSPW ’00, pages 15–21, New York, NY,
USA, 2000. ACM.

14. Ulf Norell. Dependently typed programming in agda. In Proceedings of the 4th
international workshop on types in language design and implementation, TLDI ’09,
pages 1–2, New York, NY, USA, 2009. ACM.

15. L. Piètre-Cambacédès and M. Bouissou. Beyond attack trees: Dynamic security
modeling with boolean logic driven markov processes (bdmp). In Dependable Com-
puting Conference (EDCC), 2010 European, pages 199–208, April 2010.

16. Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s journal,
December 1999.

17. Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. Refinement types for haskell. SIGPLAN Not., 49(9):269–282, August 2014.

A Maude Specification for Causal Attack Trees

mod Causal is

protecting LOOP-MODE .

sorts Formula .

subsort Nat < Formula .

op _||_ : Formula Formula -> Formula [ctor assoc comm] .

op _._ : Formula Formula -> Formula [ctor assoc comm] .

op _;_ : Formula Formula -> Formula [ctor assoc] .

op EQ(_,_) : Formula Formula -> Bool .

var P Q R S : Formula .

eq P . (Q || R) = (P . Q) || (P . R) .

eq P ; (Q || R) = (P ; Q) || (P ; R) .

eq (Q || R) ; P = (Q ; P) || (R ; P) .

ceq EQ(P,Q) = true

if P = Q .

eq EQ(P,Q) = false .

endm

	On Linear Logic, Functional Programming, and Attack Trees

